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Summary

At the start of the 21st century, several federal agencies and organizations began to recognize the
potential of improving chemical risk assessment by using the scientific and technological advances in bi-
ology and other related fields that were allowing the biological basis of disease to be better understood.
Substantial increases in computational power and advances in analytical and integrative methods made
incorporating the emerging evidence into risk assessment a possibility. Strategies were developed to use
the advances to improve assessment of the effects of chemicals or other stressors that could potentially
affect human health. Building on those efforts, the National Research Council (NRC) report Toxicity Test-
ing in the 21st Century: A Vision and a Strategy' envisioned a future in which toxicology relied primarily
on high-throughput in vitro assays and computational models based on human biology to evaluate poten-
tial adverse effects of chemical exposures. Similarly, the NRC report Exposure Science in the 21st Centu-
ry: A Vision and a Strategy’ articulated a long-term vision for exposure science motivated by the advanc-
es in analytical methods, sensor systems, molecular technologies, informatics, and computational
modeling. That vision was to inspire a transformational change in the breadth and depth of exposure as-
sessment that would improve integration with and responsiveness to toxicology and epidemiology.

Since release of those two reports, government collaborations have been formed, large-scale US and
international programs have been initiated, and data are being generated from government, industry, and
academic laboratories at an overwhelming pace. It is anticipated that the data being generated will inform
risk assessment and support decision-making to improve public health and the environment. In the mean-
time, questions have arisen as to whether or how the data now being generated can be used to improve
risk-based decision-making. Because several federal agencies recognize the potential value of such data in
helping them to address their many challenging tasks, the US Environmental Protection Agency (EPA),
US Food and Drug Administration (FDA), National Institute of Environmental Health Sciences (NIEHS),
and National Center for Advancing Translational Sciences (NCATS) asked the National Academies of
Sciences, Engineering, and Medicine to recommend the best ways to incorporate the emerging science
into risk-based evaluations.’ As a result of the request, the National Academies convened the Committee
on Incorporating 21st Century Science into Risk-Based Evaluations, which prepared this report.

SCIENTIFIC ADVANCES

To approach its task, the committee assessed scientific and technological advances in exposure sci-
ence and toxicology that could be integrated into and used to improve any of the four elements of risk
assessment—hazard identification, dose-response assessment, exposure assessment, and risk characteri-
zation. Although the National Academies has not been asked to produce a report on epidemiology compa-
rable with its Tox21 and ES21 reports, epidemiological research is also undergoing a transformation. Be-
cause it plays a critical role in risk assessment by providing human evidence on adverse effects of
chemical and other exposures, the committee assessed advances in epidemiology as part of its charge. The
committee highlights here some of the advances, challenges, and needs in each field in the context of risk
assessment. The committee’s report provides specific recommendations to address the challenges. Over-

'Referred to hereafter as the Tox21 report.
*Referred to hereafter as the ES21 report.
*The verbatim statement of task is provided in Chapter 1 of the committee’s report.
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all, a common theme is the need for a multidisciplinary approach. Exposure scientists, toxicologists, epi-
demiologists, and scientists in other disciplines need to collaborate closely to ensure that the full potential
of 21st century science is realized to help to solve the complex environmental and public-health problems
that society faces.

Exposure Science

A primary objective for improving exposure science is to build confidence in the exposure estimates
used to support risk-based decision-making by enhancing quality, expanding coverage, and reducing un-
certainty. The many scientific and technological advances that are transforming exposure science should
help to meet that objective. Some of the endeavors that the committee considered promising for advanc-
ing that objective and in which progress has been made since the ES21 report are highlighted below.

O Remote sensing, personal sensors, and other sampling techniques. Remote sensing enhances the
capacity to assess human and ecological exposures by helping to fill gaps in time and place left by tradi-
tional ground-based monitoring systems. Advances in passive sampling techniques and personal sensors
offer unparalleled opportunities to characterize individual exposures, particularly in vulnerable popula-
tions. If remote sensing and personal sensors can be combined with global positioning systems, exposure
and human-activity data can be linked to provide a more complete understanding of human exposures.

1 Computational exposure tools. Because exposure-measurement data on many agents are not
available, recent advances in computational tools for exposure science are expected to play a crucial role
in most aspects of exposure estimation for risk assessments, not just high-throughput applications. How-
ever, improving the scope and quality of data that are needed to develop parameters for these tools is crit-
ically important because without such data the tools have greater uncertainty and less applicability. Com-
parisons of calculated and measured exposures are required to characterize uncertainties in the
computational tools and their input parameters.

O Targeted and nontargeted analyses. Advances in two complementary approaches in analytical
chemistry are improving the accuracy and breadth of human and ecological exposure characterizations
and are expanding opportunities to investigate exposure—disease relationships. First, targeted analyses
focus on identifying selected chemicals for which standards and methods are available. Improved analyti-
cal methods and expanded chemical-identification libraries are increasing opportunities for such analyses.
Second, nontargeted analyses offer the ability to survey more broadly the presence of all chemicals in the
environment and in biofluids regardless of whether standards and methods are available. Nontargeted
analyses reveal the presence of numerous substances whose identities can be determined after an initial
analysis by using cheminformatic approaches or advanced or novel analytical techniques.

0 -Omics technologies. -Omics technologies can measure chemical or biological exposures directly
or identify biomarkers of exposure or response that allow one to infer exposure on the basis of a mecha-
nistic understanding of biological responses. These emerging technologies and data streams will comple-
ment other analyses, such as targeted and nontargeted analyses, and lead to a more comprehensive under-
standing of the exposure-to-outcome continuum. Identifying biomarkers of exposure to individual
chemicals or chemical classes within the complex exposures of human populations remains a considera-
ble challenge for these tools.

0 Exposure matrices for life-span research. Responding to the need to improve the characterization
of fetal exposures to chemicals, researchers have turned to new biological matrices, such as teeth, hair,
nails, placental tissue, and meconium. The growth properties (the sequential deposition or addition of tis-
sue with accumulation of chemicals) and availability of the biospecimens offer the opportunity to extract
a record of exposure. The question that needs to be addressed now is how concentrations in these matrices
are related to and can be integrated with measures of exposure that have been traditionally used to assess
chemical toxicity or risk.

7 Physiologically based pharmacokinetic (PBPK) models. PBPK models are being applied more
regularly to support aggregate (multiroute) exposure assessment, to reconstruct exposure from biomoni-
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toring data, to translate exposures between experimental systems, and to understand the relationship be-
tween biochemical and physiological variability and variability in population response. An important fo-
cus has been on the development of PBPK models for translating exposures between test systems and
human-exposure scenarios, development that has been driven by the rapidly expanding use of high-
throughput in vitro assays to characterize the bioactivity of chemicals and other materials. That research
will remain critical as regulatory agencies, industry, and other organizations increase their dependence on
in vitro systems.

The emerging technologies and data streams offer great promise for advancing exposure science and
improving and refining exposure measurements and assessment. However, various challenges will need to
be addressed. A few are highlighted here.

O Expanding and coordinating exposure-science infrastructure. A broad spectrum of disciplines
and institutions are participating in advancing exposure methods, measurements, and models. Given the
number and diversity of participants in exposure science, the information is mostly fragmented, incom-
pletely organized, and in some cases not readily available or accessible. Thus, an infrastructure is needed
to improve the organization and coordination of the existing and evolving components for exposure sci-
ence and ultimately to improve exposure assessment. Infrastructure development should include creating
or expanding databases that contain information on chemical quantities in and chemical release rates from
products and materials, on chemical properties and on processes, and analytical features that can be used
in chemical identification.

0 Aligning environmental and test-system exposures. Aligning information on environmental expo-
sures with information obtained from experimental systems is a critical aspect of risk-based evaluation.
Concentrations in test-system components need to be quantified by measurement, which is preferred, or
by reliable estimation methods. Knowledge of physical processes, such as binding to plastic and volati-
lization, and of biological processes, such as metabolism, needs to be improved.

7 Integrating exposure information. Integration and appropriate application of exposure data on en-
vironmental media, biomonitoring samples, conventional samples, and emerging matrices constitute a
scientific, engineering, and big-data challenge. The committee emphasizes that integration of measured
and modeled data is a key step in developing coherent exposure narratives, in evaluating data concord-
ance, and ultimately in determining confidence in an exposure assessment. New multidisciplinary projects
are needed to integrate exposure data and to gain experience that can be used to guide data collection and
integration of conventional and emerging data streams.

Toxicology

The decade since publication of the Tox21 report has seen continued advances in an array of tech-
nologies that can be used to understand human biology and disease at the molecular level. Technologies
are now available to profile the transcriptome, epigenome, proteome, and metabolome. There are large
banks of immortalized cells collected from various populations to use for toxicological research; large
compilations of publicly available biological data that can be mined to develop hypotheses about relation-
ships between chemicals, genes, and diseases; and genetically diverse mouse strains and alternative spe-
cies that can be used for toxicological research. Highlighted below are some assays, models, and ap-
proaches for predicting biological responses that have seen rapid advances over the last decade; they are
arranged by increasing level of biological organization.

0 Probing interactions with biological molecules. Chemical interactions with specific receptors, en-
zymes, or other discrete proteins and nucleic acids have long been known to have adverse effects on bio-
logical systems, and development of in vitro assays that probe chemical interactions with cellular compo-
nents has been rapid, driven partly by the need to reduce high attrition rates in drug development. The
assays can provide reliable and valid results with high agreement among laboratories and can be applied

Prepublication Copy 5

Oct. 2018 EPA-HQ-2018-000065 ED_001487_00006414-00025



Using 21st Century Science to Improve Risk-Related Evaluations

in low-, medium-, and high-throughput formats. Computational models have been developed to predict
activity of chemical interactions with protein targets, and research to improve the prediction of protein—
chemical interactions continues.

71 Detecting cellular response. Cell cultures can be used to evaluate a number of cellular processes
and responses, including receptor binding, gene activation, cell proliferation, mitochondrial dysfunction,
morphological changes, cellular stress, genotoxicity, and cytotoxicity. Simultaneous measurements of
multiple toxic responses are also possible with high-content imaging and other novel techniques. Fur-
thermore, cell cultures can be scaled to a high-throughput format and can be derived from genetically dif-
ferent populations so that aspects of variability in response to chemical exposure that depend on genetic
differences can be studied. In addition to cell-based assays, numerous mathematical models and systems-
biology tools have been advanced to describe various aspects of cell function and response.

O Investigating effects at higher levels of biological organization. The last decade has seen advanc-
es in engineered three-dimensional (3-D) models of tissues. Organotypic or organ-on-a-chip models are
types of 3-D models in which two or more cell types are combined in an arrangement intended to mimic
an in vivo tissue and, therefore, recapitulate at least some of the physiological responses that the tissue or
organ exhibits in vivo. NCATS, for example, has a number of efforts in this field. Although the models
are promising, they are not yet ready for inclusion in risk assessment. In addition to cell cultures, compu-
tational systems-biology models have been developed to simulate tissue-level response. EPA, for exam-
ple, has developed virtual-tissue models for the embryo and liver. Virtual-tissue models can potentially
help in conceptualizing and integrating current knowledge about the factors that affect key pathways and
the degree to which pathways must be perturbed to activate early and intermediate responses in human
tissues and, when more fully developed, in supporting risk assessments.

O Predicting organism and population response. Animal studies remain an important tool in risk
assessment, but scientific advances are providing opportunities to enhance the utility of whole-animal
testing. Gene-editing technologies, for example, have led to the creation of transgenic rodents that can be
used to investigate specific questions, such as those related to susceptibility or gene—environment interac-
tions. Genetically diverse rodent strains have provided another approach for addressing questions related
to interindividual sensitivity to toxicants. Combining transgenic or genetically diverse rodent strains with
-omics and other emerging technologies can increase the information gained from whole-animal testing
alone. Those targeted studies can help to address knowledge gaps in risk assessment and can link in vitro
observations to molecular, cellular, or physiological effects in the whole animal. In addition to the mam-
malian species, scientific advances have made some alternative species—such as the nematode Caeno-
rhabditis elegans, the fruit fly Drosophila melanogaster, and the zebrafish Danio rerio—useful animal
models for hazard identification and investigation of biological mechanisms.

The assays, models, and tools noted above hold great promise in the evolution of toxicology, but
there are important technical and research challenges, a few of which are highlighted below.

O Accounting for metabolic capacity in assays. Current in vitro assays generally have little or no met-
abolic capability, and this aspect potentially constrains their usefulness in evaluating chemical exposures
that are representative of human exposures that could lead to toxicity. Research to address the metabolic-
capacity issues needs to have high priority, and formalized approaches need to be developed to characterize
the metabolic competence of assays, to determine for which assays it is not an essential consideration, and to
account for the toxicity of metabolites appropriately.

7 Understanding and addressing other limitations of cell systems. Cell cultures can be extremely
sensitive to environmental conditions, responses can depend on the cell type used, and current assays can
evaluate only chemicals that have particular properties. Research is needed to determine the breadth of
cell types required to capture toxicity adequately; cell batches need to be characterized sufficiently before,
during, and after experimentation; and practical guidance will need to be developed for cell systems re-
garding their range of applicability and for describing the uncertainty of test results.
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T Addressing biological coverage. Developing a comprehensive battery of in vitro assays that co-
vers the important biological responses to the chemical exposures that contribute to adverse health effects
is a considerable challenge. In addition, most assays used in the federal government high-throughput test-
ing programs were developed by the pharmaceutical industry and were not designed to cover the full ar-
ray of biological response. As emphasized in the Tox21 report, research is needed to determine the extent
of relevant mechanisms that lead to adverse responses in humans and to determine which experimental
models are needed to cover these mechanisms adequately. Using -omics technologies and targeted testing
approaches with transgenic and genetically diverse rodent species and alternative species will address
knowledge gaps more comprehensively.

When one considers the progress in implementing the Tox21 vision and the current challenges, it is
important to remember that many assays, models, and tools were not developed with risk-assessment ap-
plications as a primary objective. Thus, understanding of how best to apply them and interpret the data is
evolving. The usefulness or applicability of various in vitro assays will need to be determined by contin-
ued data generation and critical analysis, and some assays that are highly effective for some purposes,
such as pharmaceutical development, might not be as useful for risk assessment of commodity chemicals
or environmental pollutants. It will most likely be necessary to adapt current assays or develop new as-
says specifically intended for risk-assessment purposes.

Epidemiology

The scientific advances that have propelled exposure science and toxicology onto new paths have
also substantially influenced the direction of epidemiological studies and research. The factors reshaping
epidemiology in the 21st century include expansion of the interdisciplinary nature of the field; the in-
creasing complexity of scientific inquiry; emergence of new data sources and technologies for data gener-
ation, such as new medical and environmental data sources and -omics technologies; advances in expo-
sure characterization; and increasing demands to integrate new knowledge from basic, clinical, and
population sciences. There is also a movement to register past and present datasets so that on particular
issues datasets can be identified and combined.

One of the most important developments has been the emergence of the -omics technologies and their
incorporation into epidemiological research. -Omics technologies have substantially transformed epidemio-
logical research and advanced the paradigm of molecular epidemiology, which focuses on underlying biolo-
gy (pathogenesis) rather than on empirical observations alone. The utility of -omics technologies in epide-
miological research is already clear and well exemplified by the many studies that have incorporated
genomics. For example, the genetic basis of disease has been explored in genome-wide association studies
in which the genomic markers in people who have and do not have a disease or condition of interest are
compared. The -omics technologies that have been applied in epidemiological research, however, have now
expanded beyond genomics to include epigenomics, proteomics, transcriptomics, and metabolomics. New
studies are being designed with the intent of prospectively storing samples that can be used for existing and
future -omics technologies. Thus, obtaining data from human population studies that are parallel to data ob-
tained from in vitro and in vivo assays or studies is already possible and potentially can help in harmonizing
comparisons of exposure and dose. Furthermore, -omics technologies have the potential for providing a
suite of new biomarkers for hazard identification and risk assessment.

Like exposure science and toxicology, epidemiology faces challenges in incorporating 21st century
science into its practice. -Omics assays can generate extremely large datasets that need to be managed and
curated in ways that facilitate access and analysis. Databases that can accommodate the large datasets,
support analyses for multiple purposes, and foster data-sharing need to be developed. Powerful and robust
statistical techniques also are required to analyze all the data. And standard ways to describe the data are
needed so that data can be harmonized among investigative groups and internationally.
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The landscape of epidemiological research is changing rapidly as the focus shifts from fixed, specif-
ic cohorts, such as those in the Nurses’ Health Study, to large cohorts enrolled from health-care organiza-
tions or other resources that incorporate biospecimen banks and use health-care records to characterize
participants and to track outcomes. Such studies offer large samples but will need new approaches to es-
timate exposures that will work in this context. Thus, there will be a need for close collaboration with ex-
posure scientists to ensure that exposure data are generated in the best and most comprehensive way pos-
sible. Furthermore, various biospecimens are being collected and stored with the underlying assumption
that they will be useful in future studies; researchers involved in such future-looking collections need to
seek input from the scientists who are developing new assays so that the biospecimens can be collected
and stored in a way that maximizes the potential for their future use. All those concerns emphasize the
need to expand the multidisciplinary teams involved in epidemiological research.

APPLICATIONS OF 21st CENTURY SCIENCE

The scientific and technological advances described above and in further detail in this report offer
opportunities to improve the assessment or characterization of risk for the purpose of environmental and
public-health decision-making. The committee highlights below several activities—priority-setting,
chemical assessment, site-specific assessment, and assessments of new chemistries—that could benefit
from the incorporation of 21st century science. Case studies of practical applications are provided in Ap-
pendixes B-D.

Priority-setting has been seen as a principal initial application for 21st century science. High-
throughput screening programs have produced toxicity data on thousands of chemicals, and high-
throughput methods have provided quantitative exposure estimates. Several methods have been proposed
for priority-setting, including risk-based approaches that use a combination of the high-throughput expo-
sure and hazard information to calculate margins of exposure (differences between toxicity and exposure
metrics). For that approach, chemicals that have a small margin of exposure would be seen as having high
priority for further testing and assessment.

Chemical assessment is another activity in which the committee sees great potential for application
of 21st century science. Chemical assessments encompass a broad array of analyses. Some cover chemi-
cals that have a substantial database for decision-making, and for these assessments scientific and tech-
nical advances can be used to reduce uncertainties around key issues and to address unanswered ques-
tions. Many assessments, however, cover chemicals on which there are few data to use in decision-
making, and for these assessments the committee finds an especially promising application for 21st centu-
ry science. One approach for evaluating data-poor chemicals is to use toxicity data on well-tested chemi-
cals (analogues) that are similar to the chemicals of interest in their structure, metabolism, or biological
activity in a process known as read-across (see Figure S-1). The assumption is that a chemical of interest
and its analogues are metabolized to common or biologically similar metabolites or that they are suffi-
ciently similar in structure to have the same or similar biological activity. The method is facilitated by
having a comprehensive database of toxicity data that is searchable by curated and annotated chemical
structures and by using a consistent decision process for selecting suitable analogues. The approach illus-
trated in Figure S-1 can be combined with high-throughput in vitro assays, such as gene-expression anal-
ysis, or possibly with a targeted in vivo study to allow better selection of the analogues to ensure that the
biological activities of a chemical of interest and its analogues are comparable. The committee notes that
computational exposure assessment, which includes predictive fate and transport modeling, is an im-
portant complement to the approach described and can provide information on exposure potential, envi-
ronmental persistence, and likelihood of bioaccumulation.

*The Nurses’ Health Study is a prospective study that has followed a large cohort of women over many decades
to identify risk factors for major chronic diseases.
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Site-specific assessment represents another application for which 21st century science can play an
important role. Understanding the risks associated with a chemical spill or the extent to which a hazard-
ous-waste site needs to be remediated depends on understanding exposures to various chemicals and their
toxicity. The assessment problem contains three elements—identifying and quantifying chemicals present
at the site, characterizing their toxicity, and characterizing the toxicity of chemical mixtures—and the ad-
vances described in this report can address each element. First, targeted analytical-chemistry approaches
can identify and quantify chemicals for which standards are available, and untargeted analyses can help to
assign provisional identities to previously unidentified chemicals. Second, analogue-based methods cou-
pled with high-throughput or high-content screening methods have the potential to characterize the toxici-
ty of data-poor chemicals. Third, high-throughput screening methods can provide information on mecha-
nisms that can be useful in determining whether mixture components might act via a common
mechanism, affect the same organ, or cause the same outcome and thus should be considered as posing a
cumulative risk. High-throughput methods can also be used to assess the toxicity of mixtures that are pre-
sent at specific sites empirically rather than assessing individual chemicals.

Assessment of new chemistries is similar to the chemical assessment described above except that it
typically involves new molecules on which there are no toxicity data and that might not have close ana-
logues. Here, modern in vitro toxicology methods could have great utility by providing guidance on
which molecular features are associated with greater or less toxicity and by identifying chemicals that do
not affect biological pathways that are known to be relevant for toxicity. Modern exposure-science meth-
ods might also help to identify chemicals that have the highest potential for widespread environmental or
human exposure and for bioaccumulation.
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FIGURE S-1 Approach to deriving health reference values when data on similar chemicals are available. Similarity
can be based on such characteristics as chemical structure, physicochemical properties, metabolism, key events in
biological pathways, or gene expression; similarity of several characteristics increases confidence in the analogy.
The point of departure (POD) of the appropriate analogue would be adjusted on the basis of pharmacokinetic differ-
ences between the chemical of interest and the analogue and other important biological factors, such as receptor ac-
tivation; relevant uncertainty factors would then be applied or models would be used to derive the health reference
value. Accounting for uncertainty could include a determination of the degree of confidence in the read-across, in-
cluding the number of analogues identified, the degree of similarity of the analogues to the chemical of interest, and
the extent of the dataset on the analogues.
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VALIDATION

Before new assays, models, or test systems can be used in regulatory-decision contexts, it is ex-
pected and for some purposes legally required that their relevance, reliability, and fitness for purpose be
established and documented. That activity has evolved into elaborate processes that are commonly re-
ferred to as validation of alternative methods. One critical issue is that current processes for validation
cannot match the pace of development of new assays, models, and test systems, and many have argued
that validation processes need to evolve. Important elements of the validation process that need to be ad-
dressed include finding appropriate comparators for enabling fit-for-purpose validation of new test meth-
ods, clearly defining assay utility and how assay data should be interpreted, establishing performance
standards for assays and clear reporting standards for testing methods, and determining how to validate
batteries of assays that might be used to replace toxicity tests. The committee discusses those challenges
further and offers some recommendations in Chapter 6.

A NEW DIRECTION FOR RISK ASSESSMENT AND THE CHALLENGES IT POSES

The advances in exposure science, toxicology, and epidemiology described in this report support a
new direction for risk assessment, one based on biological pathways and processes rather than on obser-
vation of apical responses and one incorporating the more comprehensive exposure information emerging
from new tools and approaches in exposure science. The exposure aspect of the new direction focuses on
estimating or predicting internal and external exposures to multiple chemicals and stressors, characteriz-
ing human variability in those exposures, providing exposure data that can inform toxicity testing, and
translating exposures between test systems and humans. The toxicology and epidemiology elements of
the new direction focus on the multifactorial and nonspecific nature of disease causation; that is, stressors
from multiple sources can contribute to a single disease, and a single stressor can lead to multiple adverse
outcomes. The question shifts from whether A causes B to whether A increases the risk of B. The com-
mittee found that the sufficient-component-cause model, which is illustrated in Figure S-2, is a useful tool
for conceptualizing the new direction. The same outcome can result from more than one causal complex
or mechanism; each mechanism generally involves joint action of multiple components.

Most diseases that are the focus of risk assessment have a multifactorial etiology; some disease
components arise from endogenous processes, and some result from the human experience, such as back-
ground health conditions, co-occurring chemical exposures, food and nutrition, and psychosocial stress~
ors. Those additional components might be independent of the environmental stressor under study but
nonetheless influence and contribute to the overall risk and incidence of disease. As shown in the case

Ore Causal Mechanism

Single Component Cause

FIGURE S-2 Multifactorial nature of disease illustrated by using the sufficient-component-cause model in which
various overall mechanisms (I, 11, and III) for a disease are represented as causal pies of various components (A-J).
The committee considers pathways to be components of the mechanism.
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studies in this report, one does not need to know all the pathways or components involved in a particular
disease to begin to apply the new tools to risk assessment. The 21st century tools provide the mechanistic
and exposure data to support dose—response characterizations and human-variability derivations described
in the NRC report Science and Decisions: Advancing Risk Assessment. They also support the understand-
ing of relationships between disease and components and can be used to probe specific chemicals for their
potential to perturb pathways or activate mechanisms and increase risk.

The 21st century science with its diverse, complex, and very large datasets, however, poses chal-
lenges related to analysis, interpretation, and integration of data and evidence for risk assessment. In fact,
the technology has evolved far faster than the approaches for those activities. The committee found that
Bradford-Hill causal guidelines could be extended to help to answer such questions as whether specific
pathways, components, or mechanisms contribute to a disease or outcome and whether a particular agent
is linked to pathway perturbation or mechanism activation. Although the committee considered various
methods for data integration, it concluded that guided expert judgment should be used in the near term for
integrating diverse data streams for drawing causal conclusions. In the future, pathway-modeling ap-
proaches that incorporate uncertainties and integrate multiple data streams might become an adjunct to or
perhaps a replacement for guided expert judgment, but research will be needed to advance those ap-
proaches. The committee emphasizes that insufficient attention has been given to analysis, interpretation,
and integration of various data streams from exposure science, toxicology, and epidemiology. It proposes
a research agenda that includes developing case studies that reflect various scenarios of decision-making
and data availability; testing case studies with multidisciplinary panels; cataloguing evidence evaluations
and decisions that have been made on various agents so that expert judgments can be tracked and evaluat-
ed, and expert processes calibrated; and determining how statistically based tools for combining and inte-
grating evidence, such as Bayesian approaches, can be used for incorporating 21st century science into all
elements of risk assessment.

CONCLUDING REMARKS

As highlighted here and detailed in the committee’s report, many scientific and technical advances
have followed publication of the Tox21 and ES21 reports. The committee concludes that the data that are
being generated today can be used to address many of the risk-related tasks that the agencies face, and it
provides several case studies in its report to illustrate the potential applications. Although the challenges
to achieving the visions of the earlier reports often seem daunting, 21st century science holds great prom-
ise for advancing risk assessment and ultimately for improving public health and the environment. The
committee emphasizes, however, that communicating the strengths and limitations of the approaches in a
transparent and understandable way will be necessary if the results are to be applied appropriately and
will be critical for the ultimate acceptance of the approaches.
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Over the last decade, several large-scale US and international programs have been initiated to incor-
porate advances in molecular and cellular biology, -omics technologies, analytical methods, bioinformat-
ics, and computational tools and methods into the field of toxicology. The overarching goal of the various
programs is to move toxicology from a practice that uses whole-animal testing to one that uses primarily
modern in vitro assays and computational approaches to predict toxicity on the basis of an understanding
of the biological processes that ultimately lead from the initial chemical exposure to adverse effects. Simi-
lar efforts are being pursued in the field of exposure science with the goals of obtaining more accurate and
complete exposure data on individuals and populations for thousands of chemicals over the lifespan; pre-
dicting exposures from use data and chemical-property information; and translating exposures between
test systems and humans. It is hoped that the advances in toxicology and exposure science and better inte-
gration of the fields will improve risk assessment and thus better support decision-making to improve
public and environmental health. With various efforts under way, diverse data are being generated, and
their utility for risk assessment investigated. Although the programs and the data being generated are still
evolving and will undoubtedly continue to do so, some data could be used now to help to fill gaps and
assess chemical risk better. Several federal agencies recognize the potential value of such data in helping
them to address their many challenging tasks. Accordingly, the US Environmental Protection Agency
(EPA), the Food and Drug Administration (FDA), the National Institute of Environmental Health Scienc-
es (NIEHS), and the National Center for Advancing Translational Sciences (NCATS) asked the National
Academies of Sciences, Engineering, and Medicine to consider the integration of modern and emerging
scientific approaches and data into risk-based evaluations and to recommend the best ways to do so. As a
result of the request, the National Academies convened the Committee on Incorporating 21st Century
Science into Risk-Based Evaluations, which prepared this report.

TOXICOLOGY IN THE 21st CENTURY

In the early 2000s, several agencies and organizations began to recognize the potential of various
scientific advances in biology and related fields and the possibilities provided by increases in computa-
tional power to characterize risks of environmental exposures. Roadmaps were developed to incorporate
such advances into their strategic plans for assessing chemicals and other agents (EPA 2003; NTP 2004).
In 2007, the National Research Council (NRC) released the report Toxicity Testing in the 21st Century: A
Vision and a Strategy,' which envisioned transforming toxicity testing from a system that relies on animal
assays to one that relies primarily on high-throughput in vitro assays and computational methods based on
human biology. The primary goals behind the vision were “(1) to provide broad coverage of chemicals,
chemical mixtures, outcomes, and life stages, (2) to reduce the cost and time of testing, (3) to use fewer
animals and cause minimal suffering in the animals used, and (4) to develop a more robust scientific basis
for assessing health effects of environmental agents” (NRC 2007). The committee that prepared the 2007
report emphasized that the transformation would require a focused effort over several decades for full im-
plementation. On release of the report, the NIEHS National Toxicology Program, the EPA National Cen-
ter for Computational Toxicology, and the Chemical Genomics Center’ of the National Institutes of

'Referred to hereafter as the Tox21 report.
*The Chemical Genomics Center is now part of NCATS.
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Health formed a collaboration, known as Tox21, to advance the vision set forth in the 2007 report (Col-
lins et al. 2008). FDA later joined the collaboration.

The goals of the Tox21 collaboration are to identify and characterize specific mechanisms or path-
ways that lead to adverse effects in humans, to design assays to measure pathway responses, to develop
models that can predict toxicity using the assay data, and to set priorities among chemicals for more com-
prehensive toxicity testing (NCATS 2015a). It is planned that the data generated will ultimately help to
inform EPA, FDA, and other agencies on the hazards posed by the chemicals or products that they regu-
late and will be used by industry to screen for potential toxicity in product development. A phased ap-
proach to the research is being taken. Phase I of Tox21 has been completed and involved testing of about
2,800 chemicals in about 50 assays, including ones to assess cytotoxicity, mitochondrial toxicity, cell sig-
naling, DNA damage, immune response, drug metabolism, nuclear-receptor activation, and inhibition of
various molecular targets (Tice et al. 2013; NCATS 2015b). Phase II involves testing of over 10,000
chemicals that occupy a diverse chemical and toxicological space and include “industrial chemicals, sun-
screen additives, flame retardants, pesticides and selected metabolites, plasticizers, solvents, food addi-
tives, natural product components, drinking water disinfection by-products, preservatives, therapeutic
agents, and chemical synthesis by-products” (Tice et al. 2013). Phase III will involve identification of
physiologically relevant cells, measurement of gene expression in a large number of molecular pathways,
and testing of chemical mixtures and extracts (NCATS 2015b).

In 2007, EPA initiated its Toxicity Forecaster (ToxCast) program, which seeks to develop high-
throughput screening (HTS) assays for evaluating biological responses that are relevant to prediction of
adverse effects of chemical exposures on humans (EPA 2013). A phased approach to research is also be-
ing taken in the ToxCast program. Phase I, which has been completed, involved testing of over 300 well-
studied chemicals in several hundred HTS assays (Kavlock and Dix 2010). Phase II has also been com-
pleted; it involved testing of over 2,000 chemicals—including industrial and consumer products, food
additives, and potentially safer chemical alternatives to existing chemicals—in HTS assays for evaluating
various cell responses and over 300 signaling pathways (EPA 2013; Silva et al. 2015). ToxCast data are
now being evaluated as a means of setting priorities among chemicals for testing in EPA’s Endocrine Dis-
ruptor Screening Program and in other programs that require setting priorities for testing.

In addition to US government-led efforts, international efforts are transforming toxicology from an
observational to a predictive science. In the European Union, for example, the European Commission and
Cosmetics Europe (a trade association for the cosmetics and personal-care industry) have co-funded the
research initiative Safety Evaluation Ultimately Replacing Animal Testing (SEURAT 2015). The initia-
tive was started to develop tools to comply with legislation that banned all animal testing for cosmetic
ingredients and all marketing of animal-tested cosmetic ingredients and products; a complete ban went
into effect in March 2013. Its vision was to eliminate traditional animal testing by adopting a “toxicologi-
cal mode-of-action framework to describe how any substance may adversely affect human health, and use
this knowledge to develop complementary theoretical, computational and experimental (in vitro) models
that predict quantitative points of departure needed for safety assessment” (Berggren 2015). The research
initiative was a S-year program (2011-2015) that involved development of in vitro assays that use human
pluripotent stem cells, development of a hepatic microfluidic bioreactor, identification and investigation
of human biomarkers of chronic toxicity in cellular models, and development of computational tools for
predicting chronic toxicity.

Private industry and other organizations are also working to transform the ways in which chemicals
are assessed. For example, the pharmaceutical industry has been developing and using in vitro and com-
putational tools as early screens for drug safety for many years (Greene and Song 2011; Bowes et al.
2012). Organizations have developed case studies related to the use of new in vitro assays and computa-
tional systems-biology tools for assessment of chemical risk (Daston et al. 2015; Gocht et al. 2015).
Cheminformatics research has resulted in the development of rational systems for informing qualitative
structure—activity relationship assessments (Wu et al. 2010) and in the development of automated decision
trees for identifying toxicity end points, such as developmental and reproductive toxicity (Wu et al. 2013).
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Academic institutions are generating a substantial amount of data that could help to inform chemical
risk assessment. Academic laboratories tend to focus on end points that are not typically covered in guide-
line animal studies, such as mammary gland development (Fenton 2006; Soto et al. 2008; Osborne et al.
2015), synaptic morphology and other aspects of nervous system development (Patisaul and Polston
2008), and complex behaviors, including sociality, aggression, cognition, and behavioral hallmarks of
psychiatric disorders, such as autism spectrum disorder and attention deficit disorder (Eubig et al. 2010;
de Cock et al. 2012; Leon-Olea et al. 2014). Research on genetics, genomics, and epigenetics (including
the role of noncoding RNAs) is also abundant and is providing insights on novel biological mechanisms
and gene-by-environment interactions (Dolinoy et al. 2007; Rusyn et al. 2010; Tal and Tanguay 2012;
Nebert et al. 2013; Yeo et al. 2013). Academic laboratories have been responsible for generating nearly
all the data on transgenerational effects (Rissman and Adli 2014); have pioneered the use of nontradition-
al animal models, including transgenic and population-based models (Churchill et al. 2004; Rusyn et al.
2010; Sullivan et al. 2014); and have conducted most of the epidemiological studies of chemical risk. The
enormous volume of data being generated throughout the basic- and clinical-research communities has
prompted questions about how the data could best be used for various risk-related activities and decision-
making.

EXPOSURE SCIENCE IN THE 21st CENTURY

Exposure science is undergoing a transformation similar to that affecting toxicology with the ad-
vances in molecular technologies, computational tools, bioinformatics, sensor systems, and analytical
methods. In 2012, NRC released the report Exposure Science in the 21st Century: A Vision and a Strate-
gy, which articulated a long-term vision for exposure science. The primary long-term goal of the vision
was to broaden the reach of exposure science from a traditional focus on discrete exposures to an “inte-
grated approach that considers exposures from source to dose, on multiple levels of integration (including
time, space, and biological scale), to multiple stressors, and scaled from molecular systems to individuals,
populations, and ecosystems” (NRC 2012). The report described scientific and technological progress that
has the potential to transform exposure science, including geographic information technologies that can
track sources, exposure concentrations, and receptors; monitoring technologies that can collect data on
personal exposure of millions of people; highly sensitive analytical technologies that can identify and
measure biomarkers that are indicative of internal exposures; and computational tools that can manage the
large amounts of data generated. It also highlighted high-priority research, emphasized the need for inter-
agency collaboration and resources, and elaborated the broad concept of the exposome, defined as “the
record of all exposures both internal and external that people receive throughout their lifetime (Rappaport
and Smith 2010).” Last, it recognized the interdependence of the fields of toxicology, risk assessment, and
exposure science and foresaw the need to evolve the risk-assessment paradigm toward one in which expo-
sure science plays a strong role, specifically, a paradigm that is “influenced by and responsive to human
and environmental exposure data.” The report described four objectives of exposure science: to set priori-
ties among chemicals for toxicity testing; to provide exposure information to guide toxicity testing; to
provide quantitative pharmacokinetic data on absorption, distribution, metabolism, and excretion
(ADME) derived from human-exposure studies; and to connect exposure data with biological activity da-
ta to identify exposure-response relationships.

In response to the recommendation to improve integration of exposure science throughout the feder-
al government, the Exposure Science in the 21st Century (ES21) Federal Working Group has emerged
(EPA 2016a). It consists of representatives of more than 20 federal organizations that have a common
interest in exposure-science research and development. The purpose of the working group is to build on
the framework recommended in the ES21 report, share information, integrate activities, reduce duplica-
tion of efforts among agencies, and promote federal collaboration in the development of exposure science.
In addition to the activities of the working group, several research programs are involved in advancing

*Referred to hereafter as the ES21 report.

14 Prepublication Copy

Oct. 2018 EPA-HQ-2018-000065 ED_001487_00006414-00034



Introduction

exposure science on paths that are consistent with the vision articulated in the ES21 report. EPA created
the Exposure Forecasting (ExpoCast) program, which complements its ToxCast program (EPA 2016b).
ExpoCast focuses on developing high-throughput methods for estimating exposure and so far has been
used to make exposure predictions related to over 1,900 chemicals. EPA’s goal is to combine the expo-
sure estimates from ExpoCast with bioactivity data from ToxCast to predict human health and environ-
mental risks.

NIEHS is also interested in advancing exposure science and has supported research to develop new
sensor systems and to identify biomarkers of response to exposure (NIEHS 2015). It has created the Chil-
dren's Health Exposure Analysis Resource (NIEHS 2016), an infrastructure designed to enable and ex-
pand incorporation of environmental exposures into studies of children’s health; it includes a data reposi-
tory, support for statistical analysis, and a network of laboratories to analyze biological samples. The
NIEHS strategic plan emphasizes a commitment to supporting research to define and explore the expo-
some, and the agency has funded the HERCULES center at Emory University to conduct exposome-
focused research (NIEHS 2012).

In addition to the efforts in the United States, there are international efforts, such as the Human Ear-
ly-Life Exposome (HELIX) project and the EXPOsOMICS project. HELIX has the ambitious goal of
characterizing early-life exposures and ultimately linking exposures with children’s health outcomes
(Vrijheid et al. 2014). The project is studying 32,000 mother—child pairs in six European countries.
EXPOsOMICS focuses on the external and internal exposome associated with air pollution and water
contamination (Vineis et al. 2013, in press). The project will perform personal-exposure monitoring of air
pollutants for hundreds of subjects in Europe, and biological samples from thousands of subjects will be
analyzed for internal exposure markers by using -omics technologies (CORDIS 2015).

Like the toxicology initiatives, the exposure programs are generating vast amounts of data, but how
the data are best used to inform risk-related tasks and decision-making remains to be determined.

TERMINOLOGY

The recent advances in toxicology and exposure science have given rise to a new vocabulary and a
plethora of new terms. Some researchers and practitioners distinguish between terms, but others use the
same terms interchangeably and inconsistently. Consequently, there is some confusion as to the specific
meanings of various terms. Mode of action, mechanism of action, and adverse outcome pathway are ex-
emplary of the confusion. Each term denotes a progression from some exposure or molecular initiating
event to an adverse outcome. Mechanism of action is often distinguished from mode of action by a greater
level of biological detail in the understanding and description of the progression from exposure to out-
come (EPA 2005; NRC 2007). Mode of action typically describes the progression of key events that result
from a chemical exposure whereas adverse outcome pathway conceptually describes the sequential chain
of causally linked events at various levels of biological organization starting from a molecular initiating
event through to the observable adverse outcome (OECD 2013; Berggren et al. 2015). Although all three
terms are used to describe the sequence of steps from an initiating event to an adverse outcome, subtle
distinctions between the terms have been made. The subtleties are often lost in practice, and the terms are
used interchangeably. In the present report, the committee uses primarily mechanism and defines the term
generally to refer to a detailed description of the process by which an agent causes an effect. It uses ad-
verse outcome pathway only in the context of frameworks that have been developed specifically with the
phrase. Mechanism is further defined in the context of the new direction of risk assessment in Chapters 5
and 7.

Exposure and dose are two other terms that are often defined and used inconsistently. NRC (2012)
defined exposure broadly as the contact between a stressor and a receptor at any level of biological organ-
ization (organism, organ, tissue, or cell). Given that broad definition, the distinction between exposure
and dose becomes arbitrary, and dose becomes unnecessary. Exposure is then characterized by the identi-
ty of the stressor and the amount, location, and timing of the stressor that comes into contact with the re-
ceptor; timing encompasses both duration and the time at which the contact occurs. The committee uses
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exposure primarily in the present report but acknowledges that it often uses dose in conventional phrases,
such as dose-response relationship.

Many terms associated with -omics technologies have been coined in recent years. Box 1-1 provides
definitions of various terms used throughout this report. Other terms that are specific to topics discussed
in various chapters are defined in those chapters. The committee acknowledges that as the science pro-
gresses new terms will be needed, but it urges the scientific community to be judicious in inventing new
terms. If needed, new terms should be defined clearly and used consistently.

The committee debated how to refer to all the assays, tools, and methods arising from the “21st cen-
tury visions” for toxicology and exposure science; some are no longer “new,” and others are still in de-
velopment. To simplify the text, the committee often refers to them as Tox21 or ES21 assays, tools, or
methods. That notation is meant to be broad and includes all the assays, tools, and methods coming from
government, academic, and private laboratories, not only those being developed as part of the Tox21 pro-
gram previously described.

THE COMMITTEE AND ITS TASK

The committee that was convened as a result of the agencies’ request included experts in toxicology;
physiologically based pharmacokinetic modeling; computational methods and bioinformatics; -omics, in
vitro models, and alternative methods; epidemiology; exposure assessment; statistics; and risk assessment
(see Appendix A for the committee’s biographical information). As noted, the committee was asked to
consider and recommend the best uses of the various types of emerging data in risk-based evaluations.
The committee’s verbatim statement of task is provided in Box 1-2.

BOX 1-1 Definitions of Various -Omics Terms

Adductomics: The comprehensive identification of chemicals that bind to DNA or selected proteins,
such as albumin.

Epigenomics: The analysis of epigenetic changes in DNA, histones, and chromatin that regulate gene
expression. Epigenetic changes are changes other than changes in DNA sequence that are involved
in gene silencing.

Exposome: A term first coined by Wild (2005) to represent the totality of a person’s exposure from
conception to death; exposome research involves the measurement of multiple exposure indicators by
using -omics approaches.

Genomics: The analysis of the structure and function of genomes.

Metabolomics: The scientific study of small molecules (metabolites) that are created from chemicals
that originate inside the body (endogenously) or outside the body (exogenously) (National Academies
of Sciences, Engineering, and Medicine 2016). For purposes of the present report, metabolomics is
assumed to include exogenous chemicals found in biological systems in their unmetabolized forms.

Proteomics: The analysis of the proteins produced by cells, tissues, or organisms. Analysis is con-
ducted to understand the location, abundance, and post-translational modification of proteins in a bio-
logical sample.

Transcriptomics: Qualitative and quantitative analysis of the transcriptome, that is, the set of tran-
scripts (mRNAs, noncoding RNAs, and miRNAs) that is present in a biological sample.
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BOX 1-2 Statement of Task

An ad hoc commitiee under the auspices of the National Research Council (NRC) will provide
recommendations on integrating new scientific approaches into risk-based evaluations. Specifically,
the committee will first consider the scientific advances that have occurred following the publication of
the NRC reports Toxicity Testing in the 21st Century: A Vision and a Strategy and Exposure Science
inthe 21st Century: A Vision and a Strategy. Given the various ongoing lines of investigation and new
data streams that have emerged, the committee will then propose how best to integrate and use the
emerging results in evaluating chemical risk and identify how fraditional human-health risk assessment
can incorporate the new science. It will consider whether a new paradigm is needed for data validation
{or acceptance), how to integrate the divergent data streams, how uncertainty might need to be char-
acterized (or how characterization of uncertainty might need to change), and how best to communicate
the new approaches so that they are understandable to various stakeholders. It will focus its recom-
mendations on pragmatic solutions and provide case studies that illustrate its recommendations. Final-
ly, the committee will identify barriers or obstacles to advancing and integrating the various types of
science, and ultimately transforming risk assessment.

THE COMMITTEE’S APPROACH TO ITS TASK

To address its task, the committee held seven meetings, which included three open sessions to hear
primarily from various sponsor representatives. Given the potential breadth of its task, the committee de-
voted substantial time to interpretation of its charge. It used as a basis of its work the risk-assessment
framework that was initially proposed in the 1983 report Risk Assessment in the Federal Government:
Managing the Process (NRC 1983) and updated most recently in the 2009 report Science and Decisions:
Advancing Risk Assessment (NRC 2009) (see Figure 1-1). The committee considered and describes scien-
tific and technological advances in exposure science, toxicology, and epidemiology that could be inte-
grated into and used to improve any of the four elements of risk assessment (hazard identification, dose—
response assessment, exposure assessment, and risk characterization). The report, however, is not a cata-
log of all scientific and technological advances that have been made since publication of the 2007 and
2012 reports (NRC 2007, 2012), but rather a review of the ones most relevant to risk-based evaluations in
EPA and FDA.

» Hazard Identification

What adverse health or environmental effectsare associated with
the agents of concern?

* Dose—Response Assessment
* Risk Characterization
For each adverse effect, what is the relationship between dose and
the probability of the occurrence of the adverse effect in the range
of doses identified in the exposure assessment?

What is the nature and
magnitude of risk associated
with existing conditions?

What risk decreases (benefits)
are associated with each of
\L < | the options?

Are any risk increased? What

* Exposure Assessment are the significant
uncertainties?

What exposures or doses are incurred by each population of interest
under existing conditions?

How do various management options affect existing conditions and
resulting exposures or doses?

FIGURE 1-1 The risk-assessment process as defined by its four elements: hazard identification, dose-response assessment, ex-
posure assessment, and risk characterization. Source: Adapted from NRC 2009.
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The committee identified various agency tasks and decision-making contexts (see Box 1-3)—which
require different depths of information—and used the tasks and contexts to frame general and specific
examples of applications (case studies) for integrating the new science into various components of risk
assessment. The examples provide guidance for communicating to various stakeholders how the new sci-
ence could be used. The committee then considered how data validation, data integration, and uncertainty
analysis might need to be adapted to use the new science. The committee recognizes that there will be
challenges in using new tools and concepts in fields that are already heavy with practice standards and set
protocols.

BOX 1-3 Agency Tasks and Decision-Making Contexts

1) Priority-setting—Can be based on hazard, exposure, or risk.

2) Chemical assessment—Can include Integrated Risk Information System assessments, Provisional
Peer Reviewed Toxicity Values, National Toxicology Program Office of Health Assessment and
Translation hazard assessments, and assessments of various regulated substances, such as pesti-
cides, drugs, and food additives.

3) Site-specific assessments—Can involve selection of geographic sites or chemicals at a site to eval-
uate and can involve assessment of data-poor chemicals or mixtures; can also involve assessment
of previously unidentified chemicals in the environment.

4) Assessment of new chemistries—Can involve assessment of green chemistry, new-to-the-world
technologies, and unexpected environmental degradation products of chemicals in commerce.

ORGANIZATION OF THIS REPORT

The committee’s report is organized into seven chapters and five appendixes. Chapters 2, 3, and 4
describe new or emerging methods and tools in exposure science, toxicology, and epidemiology, respec-
tively. Chapter 5 highlights the new direction of risk assessment and describes practical applications for
21st century science. Chapter 6 discusses issues surrounding model and assay validation and acceptance.
Chapter 7 focuses on interpretation and integration of data and evidence. Appendix A provides biograph-
ical information on the committee members, and Appendixes B, C, and D provide case studies that
demonstrate practical applications of the committee’s recommendations for using new data streams in
risk-based evaluations. Appendix E provides a case study in using Bayesian approaches with high-
throughput data.
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2

Advances in Exposure Science

As described in Chapter 1, the National Research Council (NRC) report Exposure Science in the
21st Century: A Vision and a Strategy articulated a vision for exposure science that was intended to trans-
form, expand, and invigorate the field (NRC 2012). Recent investments in exposome technologies and
programs (CHEAR; NIEHS 2016), in new large-scale longitudinal exposure-epidemiology research pro-
grams (HELIX; Vrijheid et al. 2014 and EXPOsOMICS; Vineis et al. 2013), and in the rapidly expanding
exposure-science programs headed by the National Exposure Research Laboratory and the National Cen-
ter for Computational Toxicology of the US Environmental Protection Agency (EPA) are examples of the
immediate impact of the ES21 report.' Several research fields have seen substantial advances since the
ES21 report was published, and these advances create opportunities for providing guidance to EPA, the
Food and Drug Administration, and others on how best to integrate emerging exposure-science data into
risk assessments (Egeghy et al. 2016). Accordingly, this chapter describes the major advances in exposure
science since the publication of the ES21 report and applications that would be most relevant and useful
for risk-based decision-making. It also presents unaddressed opportunities related to decision-making
based on exposure or risk and discusses major obstacles to various applications.

The interrelationship among the fields of exposure science, toxicology, and epidemiology is a central
theme of this chapter. Figure 2-1 illustrates the series of events from introduction of a stressor into the envi-
ronment and its movement through the environment via specific pathways to the receptor and the triggering
of a biological response of potential regulatory concern. The figure provides a broad conceptual overview of
the scope of exposure science and a general organizational framework as envisaged by the ES21 committee
and the present committee. The figure also illustrates the points of integration with toxicology and epidemi-
ology and the fundamental distinctions between fields. Although the continuum is depicted as a linear path,
the committee recognizes that multiple interconnecting paths are typically involved in the source-to-
outcome continuum. In cases where source identification or mitigation rather than toxicology or risk as-
sessment is the goal, one moves from right to left from measured exposures to sources. Box 2-1 provides
some definitions of the key terms used in this chapter related to exposure science.

Organizational frameworks for exposure science, such as the one in Figure 2-1, have been used to
describe exposure pathways for contaminated sites and are implicit in all models of environmental or bio-
logical fate of chemicals (Wania and Mackay 1999; Koelmans et al. 2001; Schenker et al. 2009). The
frameworks have been essential in guiding the acquisition of data, the organization of data, and the use of
data in modeling to describe or predict exposure quantitatively. Although some frameworks, such as the
Conceptual Site Model (Regens et al. 2002; Mayer et al. 2005), are largely qualitative and conceptual and
apply to specific exposure settings or specifically to modeling exercises, others, such as the Aggregate
Exposure Pathway framework (Teeguarden et al. 2016), attempt to expand on earlier successes by gener-
alizing the approach to support data acquisition, data organization, conceptualization, and modeling in the
broader exposure-science community. As the field of exposure science evolves as a result of advances in
the tools and approaches described in this chapter, the use of the frameworks will enable the development
of infrastructure to support exposure-data acquisition, collection, organization, and access and to improve
the accuracy, completeness, efficiency, and transparency of exposure assessment and modeling.

'The present committee refers to Exposure Science in the 21st Century: A Vision and a Strategy (NRC 2012) as
the ES21 report and to its committee as the ES21 committee.
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FIGURE 2-1 Conceptual overview of the scope of and common methods for exposure science. Toxicology and
epidemiology have traditionally used both internal-exposure and external-exposure information. The biological in-
terface between exposure and a receptor (such as a human, tissue, or cell) is the test-system or target-site exposure.
The main benefit of applying target-site exposures is a reduction in confounding by pharmacokinetic and other fac-

tors and has led to increasing use of target-site exposure metrics in toxicology and epidemiology.

MAJOR ADVANCES IN EXPOSURE SCIENCE

The committee reviewed advances in the field of exposure science since the publication of the ES21
report with the goal of identifying major advances that have the potential for sustained effects on the im-
portant applications described later in this chapter and in the case studies described in Appendixes B-D.

The advances are summarized in this section.

Remote Sensing and Geospatial Environmental Exposure Assessment

Several substantial advances in exposure science are the result of innovations in remote sensing,
global positioning systems (GPS), and geographic information systems (GIS). Remote sensing is an im-
portant tool for enhancing the capacity to assess human and ecological exposures because it provides in-
formation on Earth’s surface, water, and atmosphere that cannot be provided by traditional ground-based
monitoring systems (Al-Hamdan et al. 2014). Since the ES21 report, remote-sensing data have been used
to estimate concentrations of ambient criteria air pollutants (NO,, O;, and PM;5) on a global scale (Brauer
et al. 2015; Geddes et al. 2016; van Donkelaar et al. 2015). Models have estimated the changes in global
air poliution and have allowed complete global coverage of key pollutants on a relatively fine spatial
scale. The application of remote-sensing technologies with ground-based monitoring will continue to im-
prove human exposure assessment. Several recent key advances include the National Aeronautics and
Space Administration (NASA) launch of six Earth-observing missions and the addition of three new in-
struments to the International Space Station (Seltenrich 2014). NASA and the National Oceanic and At-
mospheric Administration provide free access to exposure-relevant data, such as NO, and PM, 5 concen-
trations in the troposphere, and environmental data relevant to exposure assessment and interpretation of

monitoring data (Seltenrich 2014).
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BOX 2-1 Definitions of Selected Exposure Terms

Exposure science. ‘The collection and analysis of gquantitative and qualitative information needed to
understand the nature of contact between receptors (such as people or ecosystems) and physical,
chemical, or biologic stressors. Exposure science strives to create a narrative that captures the spatial
and temporal dimensions of exposure events with respect 1o acute and long-term effects on human
populations and ecosystems” (NRC 2012).

Internal and external exposure. Internal and external exposures are two commonly used classes of
exposure metrics. Blood or tissue concentrations from biomonitoring studies are relatively direct
measures of internal exposure; amounts or concentrations in biofluids leaving the body (breath and
urine) are less direct measures. Internal measures can be estimated from the less direct measures
when supporting pharmacokinetic data and models are available. Air or media concentrations are ex-
ternal measures of exposure from which internal measures of exposure might be derived if necessary.
What exposure metric is considered appropriate depends on the decision context, confidence in the
measurement, and proximity to the site of action.

Near-field chemical exposures. Near-field human exposures result from chemical release or use
near a person. Near-field chemical exposures include direct dermal application (for example, of sun-
screen or cosmetics), direct inhalation (for example, of tobacco smoke or pharmaceuticals), and direct
ingestion (for example, of pharmaceuticals). Near-field chemical exposures can also result from the
intentional use (as in the case of consumer products) and inadvertent release (as in the case of build-
ing materials) of chemicals near a person and later near-field transport to a person that results in con-
tact or intake through inhalation, dermal, or ingestion pathways.

Far-field chemical exposures. Far-field human exposures result from release or use distant from a
person. They can also result from initial near-field use (indoors) and later fate and transport in the nat-
ural environment (outdoors) before the chemical reaches a person. Far-field exposures can result from
inhalation of outdoor air and ingestion of drinking water and foods that contain chemicals that have
entered the contact media through fate and transport processes in the natural environment.

Aggregate exposure. Aggregate exposure is exposure to a given substance from multiple sources
via multiple pathways and routes (that is, combined exposure from multiple sources by dermal, inges-
tion, and inhalation routes).

The studies generated with remote sensing data provide even greater insights into human exposures
when coupled with GPS and GIS data on populations of interest. GPS data are used to track people in ob-
servational exposure and epidemiological studies (Elgethun et al. 2007), and recent advances have al-
lowed more automated coding of GPS data on activities and microenvironments, such as inside and out-
side at home and at work (Wu et al. 2011; Breen et al. 2014; Nethery et al. 2014; Andra et al. 2015). Data
on microenvironments can be used as input for exposure models to refine exposure estimates based on
remote sensing data, ground-based ambient air data, and indoor air monitoring data (Breen et al. 2014).
Advances in GPS technologies have also been coupled with sensor technologies that measure basic health
data, such as heart and respiratory rates and activity level. Information on such measures can be additional
inputs for the exposure models and allow further refinement and improvement of exposure classification
(Andersen et al. 2015).

Computational Exposure Assessment
For the vast majority of stressors, there are few exposure measurements (Muir and Howard 2006;

Egeghy et al. 2012). Various conceptual, empirical, and predictive exposure models are needed to address
those data gaps and to enhance the usefulness and application of measured data to exposure and risk as-
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sessment. Since the release of the ES21 report, there has been substantial research activity and advance-
ment in the development of computational exposure tools, particularly for calculating near-field chemical
exposures of humans, for quantifying relationships between external and internal exposures and between
in vivo and in vitro exposures, and for high-throughput exposure estimation that has been used alone and
in combination with bioactivity data to set priorities for chemical assessment.

Egeghy et al. (2011) reviewed tools designed to set priorities rapidly for large numbers of chemicals,
and Mitchell et al. (2013) conducted an “exposure model prioritization challenge.” A key finding of the
challenge was the need to reconcile exposures to chemicals released outdoors (far-field sources) with ex-
posures to chemicals in consumer products applied directly or through indoor-environment exposure
pathways (near-field exposures). The recognized absence of tools and exposure information is stimulating
research to develop and improve near-field and far-field exposure science. Specifically, the seminal mod-
¢l developed for simulating chemical transport in an indoor environment (Bennett and Furtaw 2004) has
been revised to include exposure pathways for which external human exposures (intake fractions) (Shin et
al. 2012) and internal exposures (estimates of whole-body concentrations) (Zhang et al. 2014; Webster ¢t
al. 2016) can be estimated. Furthermore, data and models are evolving to improve mechanistic under-
standing of chemical releases and exposures indoors (Weschler and Nazaroff 2010, 2012; Little et al.
2012). Exposure models for consumer products also are evolving and being evaluated for select chemicals
(Young et al. 2012; Gosens et al. 2014; Delmaar et al. 2015; Dudzina et al. 2015). Exposure models and
frameworks that combine far-field and near-field pathways for aggregate human exposure assessments are
also being developed and applied (Isaacs et al. 2014; Shin et al. 2015; Fantke et al. 2016).

EPA’s ExpoCast project conducts research on and uses computational tools for high-throughput ex-
posure estimation or “forecasting” to set testing or assessment priorities. The ExpoCast project combines
various models and data sources to estimate exposures, which can then be compared with high-throughput
ToxCast data and other sources of toxicity or bioactivity data. As a part of the ExpoCast exposure estima-
tion, the Systematic Empirical Evaluation of Models (SEEM) framework includes calibration and evalua-
tion of exposure-model estimates against chemical concentrations measured in or estimated from blood
and urine samples from a group of nonoccupationally exposed US residents over the age of 6 years
(Wambaugh et al. 2013, 2014).> Exposure-model predictions are compared with available biomonitoring
data to estimate the uncertainty in the combined exposure-model calculations (Wambaugh et al. 2013).
The Stochastic Human Exposure and Dose Simulation Model for Multimedia, Multipathway chemicals
(SHEDS-MM) for exposure-based priority-setting and screening has been revised for high-throughput
capacity (SHEDS-HT) (Isaacs et al. 2014) and feeds into the SEEM framework. Other complementary
high-throughput aggregate exposure-estimation models that combine existing and emerging tools (see, for
example, Shin et al. 2015) can also be incorporated into the SEEM framework, and they are being ap-
plied, evaluated, and refined in other contexts.

Improving the amount and quality of the data that are needed to develop parameters for the compu-
tational exposure tools is critically important; without such data, the applicability of the tools is limited.
Some advances include updated exposure factors (EPA 2011) and the development of the Consumer
Product Chemical Profile Database (Goldsmith et al. 2014) and the Chemical/Product Categories Data-
base (Dionisio et al. 2015).” Numerous quantitative structure—activity relationship (QSAR) models, quan-
titative structure—property relationship (QSPR) models, and other computational tools for predicting
chemical-property information—such as solubilities, partition coefficients, and degradation rates—
continue to evolve. The applicability domains of existing tools for calculating chemical-property infor-
mation require further examination and more explicit definition to ensure that the models are calibrated
and applied within the same chemical space. Integrated testing strategics to obtain more high-quality
measurements can then be strategically developed to expand the applicability domains of current QSAR
models, QSPR models, and other tools used for property estimation.

*Data are from the US National Health and Nutrition Examination Survey.
*See http://actor.epa.gov/cpeat
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Because of the extensive measurement-data gaps, the recent advances in computational tools for ex-
posure science are expected to play a crucial role in most aspects of exposure estimation for risk-based
assessments, not only high-throughput applications. Higher-tiered models that link exposure databases
and spatial information (see, for example, Georgopoulos et al. 2014) and opportunities to combine and
integrate measurements and models to characterize and quantify the source-to-receptor relationship more
fully (see, for example, McKone ¢t al. 2007) are being developed and applied. Exposure-model uncertain-
ty and sensitivity analyses are useful computational methods that can be used to set priorities for expo-
sure-science research systematically (Aot et al. 2012; NRC 2012; Arnold et al. 2014).

Personalized Exposure Assessment

Behavior patterns that determine exposure routes, durations, and conditions combined with the vari-
ation in environmental concentrations of stressors over space and time result in unique exposure patterns
for individuals and populations. Exposure data that are needed to assess personal exposures can now be
generated on various spatial and temporal scales with traditional and emerging methods. New opportuni-
ties to measure exposures in and outside the body will help to characterize and quantify personal expo-
sures to an array of stressors. Particularly notable are recent advances in the application of passive sam-
pling techniques to determine internal human concentrations (for example, using silicone implants) (Allan
et al. 2013a; Gilbert et al. 2015; O’Connell et al. 2015), external exposure concentrations integrated over
time and space (for example, using silicone wristbands) (O’Connell ¢t al. 2014a,b), and chemical concen-
trations and chemical activities® in media to which humans are exposed, such as foods (Allan et al. 2013b;
Jahnke et al. 2014) and indoor air (Wetzel and Doucette 2015). Portable sensors for measuring particles
and volatile organic chemicals are being refined and are providing valuable information on personal ex-
posures, particularly in vulnerable populations (McGinn et al. 2016). Mobility-based exposure assessment
that uses personal devices, such as cell phones, to provide GPS information, can be used to determine
time and location of people relative to exposure levels determined from remote sensing information (Ad-
ams et al. 2009; de Nazelle et al. 2013; Su et al. 2015). Consumer product and use databases and market
research data can provide population and personal exposure information that can help to inform exposure
assessment, for example (Goldsmith et al. 2014). All those emerging technologies and data streams will
complement existing tools and techniques in the effort to obtain more comprehensive knowledge of the
source-to-outcome continuum.

Targeted and Nontargeted Exogenous Chemical Exposure Assessment

Important advances in two complementary approaches for characterizing human exposure— target-
ed and nontargeted analysis—are improving the accuracy and breadth of human and ecological exposure
assessment (Fiehn 2002; Park et al. 2012; O’Connell 2014a.b; Go et al. 2015; Mastrangelo et al. 2015;
Sud et al. 2016). Both approaches, whether focused on endogenous or exogenous chemicals, are common-
ly referred to as metabolomics approaches.” Targeted analysis focuses on selected chemicals for which
standards and methods are available and identifies chemicals on the basis of mass spectrum, elution time,
detector signals, or some combination of these measures. Targeted analysis has produced much of the ex-

‘Chemical activity is related to the energetic state of a chemical, is a measure of the effective concentration of a
chemical in a given exposure medium (Reichenberg and Mayer 2006; Mackay et al. 2011), and is closely related to
the freely dissolved concentration. For example, chemical activity is an improved measure of exposure when inter-
action with media constituents (such as particles in air and organic matter in water) effectively reduces the amount
of chemical free to interact with a biological receptor (such as a human), often referred to as the bioavailable frac-
tion.

>As defined in Chapter 1 (see Box 1-1), metabolomics is assumed to include exogenous chemicals found in bio-
logical systems in their unmetabolized forms.
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posure data used in epidemiological studies and risk assessment. The US National Health and Nutrition
Examination Survey and the Canadian Health Measures Survey are two extensive biomonitoring pro-
grams that use targeted analytical techniques for exposure assessment (Needham et al. 2005; Calafat
2012; Haines and Murray 2012). Although initially limited by throughput and a focus on single chemi-
cals, small groups of chemicals (Casas et al. 2011; Mortensen et al. 2014), or modest-size chemical clas-
ses (O’Connell et al. 2014b), targeted methods are emerging for quantitative analysis of hundreds of
chemicals (O’Connell et al. 2015). Generally, there is a tradeoff between sensitivity and selectivity that
imposes limitations on the number of chemicals that can be analyzed in single runs by using a single in-
strument or method. Targeted analyses are limited to chemicals for which standards are available. Ac-
cepted standards for identification and quantitation have been articulated for most analyte classes (such as
metabolites and peptides) (Castle et al. 2006; Fichn et al. 2006; Goodacre et al. 2007; Sumner et al. 2014),
but these standards are inconsistently applied in practice.

Targeted analytical methods for protein and DNA adducts have emerged as an alternative to direct
measurement of chemicals in blood. When stable protein or DNA adducts can be easily measured and
information on the rates of adduct formation and loss is available, adduct concentrations can be used as
proxies for the time-weighted average exposure to the parent chemical. Those approaches are particularly
valuable for exposure assessment and exposure reconstruction for short-lived chemicals whose concentra-
tions in blood and other biofluids might be very low and subject to high temporal variability. One exam-
ple is the use of hemoglobin adducts of acrylamide and its metabolite glycidamide for accurate recon-
struction of acrylamide exposure and its concentration in blood over time in humans (Young et al. 2007).
Chemical-specific adducts of the carcinogens butadiene, formaldehyde, and acetaldehyde have emerged
recently as metrics of exposure to these extremely short-lived chemicals (Swenberg et al. 2007; Swenberg
et al. 2008; Moeller et al. 2013; Yu et al. 2015). The benefits of using stable adducts to measure exposure
to short-lived chemicals include the ability to integrate exposure over time (that is, the adducts can serve
as integrative measures of exposure because they are more stable) and biological relevance because of the
proximity to a target site, such as DNA. Swenberg and co-workers have established highly sensitive
methods for specific formaldehyde DNA adducts and pioneered methods for establishing the contribution
of endogenous and exogenous formaldehyde to total internal exposure (Edrissi et al. 2013; Moeller et al.
2013; Pottenger et al. 2014; Pontel et al. 2015; Yu et al. 2015). The studies highlight the utility of targeted
analysis of adducts for exposure assessment and perhaps a potential for broad assessment of the adduc-
tome (Gavina et al. 2014; Pottenger et al. 2014).

Nontargeted analysis has emerged as an approach to provide qualitative information on the large
portion of the exposome that is uncharacterized—a portion that includes bioactive endogenous peptides,
exogenous chemicals, metabolites, lipids, and other biomolecules. It offers the ability to survey more
broadly the presence of all chemicals in the environment and in biofluids regardless of whether standards
and methods are available. The nontargeted approach trades selectivity for breadth and produces numer-
ous unidentified analytical features. Comparing unidentified analytical features from large cohorts and
correlating them with responses of interest in the cohorts can help to identify analytical features for fur-
ther investigation (Burgess et al. 2015). Cheminformatics and computational chemistry can be used to
identify chemicals with varying levels of confidence; nuclear magnetic resonance spectroscopy can be
used to identify chemical structure with high accuracy. Accepted standards for identification of metabo-
lites (Castle et al. 2006; Fiehn et al. 2006; Sumner et al. 2014) have not been routinely applied to nontar-
geted approaches, so chemical matches to the analytical features is tentative and association between spe-
cific chemicals and disease is uncertain.

Nontargeted approaches are promising, but there are limitations in the use of data produced from
nontargeted analyses that should be considered before collecting the data. For example, an unidentified
analyte cannot be used to develop a mechanistic argument to support or refute a causal association be-
tween the presence of the analyte and a clinical effect, it cannot be quantified in absolute terms, it cannot
be subjected to toxicity testing, and it cannot be attributed to sources for purposes of exposure mitigation.
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Although identifying all analytes is an important objective, reducing the number of analytes—to investi-
gate, for example, on the basis of frequency in samples, membership in an important chemical class, and
association with a clinical outcome—will be important until methods for identification of unknown ana-
ytes become more efficient.

Initial efforts to understand potential contributions of exogenous and endogenous exposure have led
to important insights about the role of each and about potential limitations of analytical technologies.
Rappaport and co-workers (2014) reported human blood concentrations of many chemicals, their sources,
evidence of chronic-disease risks, and numbers of metabolic pathways. Blood concentrations of endoge-
nous chemicals, food chemicals, and drugs were indistinguishable and spanned 11 orders of magnitude;
blood concentrations of pollutants were on the average lower by a factor of about 1,000 (Figure 2-2).
Although the findings cannot be generalized to all chemicals or all exposure scenarios, the blood-
concentration ranges highlight the importance of using highly sensitive analytical instrumentation to char-
acterize human exposure (Athersuch 2016; Uppal et al. in press).

Risk assessment and mitigation of sources and risks all depend on knowing absolute quantities of
specific chemicals; therefore, targeted analyses will continue to be the primary source of exposure infor-
mation. Because the results of nontargeted analyses provide only relative or qualitative exposures, they
are not readily applicable to conventional risk assessment. However, when unidentified analytical fea-
tures can be aggregated according to their toxicity or pharmacokinetic behavior, there will be new oppor-
tunities to conduct hazard or risk assessments on the basis of similarity to chemicals whose toxicity is
known.
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FIGURE 2-2 A survey of measured blood concentrations shows that for the selected chemicals concentrations of
pharmaceuticals and naturally present endogenous chemicals are similar and are generally higher than concentra-
tions of envirommental contaminants. The findings highlight the importance of using highly sensitive analytical in-
strumentation to characterize human exposure. Source: Rappaport et al. 2014,
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Exposure Inference from -Omics Technologies

-Omics technologies that quantify the abundance of biomolecules, such as proteins and transcripts,
offer distinct and diverse applications for exposure assessment. In contrast with metabolomic approaches
that quantify exposure to specific metabolites of endogenous and exogenous chemicals, proteomic and
transcriptomic approaches provide global assessment of biological responses to exposure to multiple
stressors. Those -omics approaches can provide biomarkers or biosignatures of response to chemical clas-
ses, such as oxidants (Roede et al. 2013; Go and Jones 2014) and potentially genotoxic chemicals (Fenech
and Bonassi 2011; Lovreglio et al. 2014; Kalemba-Drozdz 2015; Moro et al. 2015; Tumer ¢t al. in press).
That particular application of -omics technologices, a key element of Wild’s original vision of the expo-
some (Wild 2005, 2012), is used to infer exposure to one or more chemicals on the basis of a mechanistic
understanding of biological response to them. Some biomarkers of exposure can result from changes in
the body that are induced by chemical exposure (for example, changes in metabolite or protein profiles),
but these types of biomarkers commonly do not provide quantitative exposure information that can be
used for risk estimation. The application of -omics technologies to infer exposure to classes of stressors is
expected to grow. Although the initial utility will probably be in qualitative exposure inference and in
assembling evidence on biological pathways, application should expand to more confident and more
quantitative characterization of exposures to chemical classes or groups of stressors that produce the same
biological effect, such as oxidation or inflammation.

Novel Exposure Matrices for Exposure Reconstruction

Assessment of occupational and environmental exposures will continue to rely on matrices for
which there are established methods of collection, analysis, and interpretation. Those matrices include air,
water, soil, food, blood, and urine. The expanding computational exposure-science infrastructure (Arnot
et al. 2012; Shin et al. 2012, 2015; Wambaugh et al. 2013, 2014; Isaacs et al. 2014), which uses the tradi-
tional data streams to construct population-level exposure assessments, will continue to drive the genera-
tion of data on the traditional exposure matrices.

Growing emphasis on near-field exposures (Stapleton et al. 2008; Shin et al. 2012; Wambaugh et al.
2014) and on exposures during development, which is the focus of the Children’s Health Exposure Re-
source Centers of the National Institute for Environmental Health Sciences, is poised to drive exposure
assessment toward new environmental and biological matrices and new approaches. For example, popula-
tion-level exposure to hundreds of chemicals was recently shown to be dominated by near-field exposures
from consumer-product and household use, not by far-field exposures that take place after chemicals are
released into the outdoor environment (Shin et al. 2012; Wambaugh et al. 2014). Increased focus on cate-
gorizing chemicals in consumer products and on assembling exposure data for use in exposure assessment
is one immediate outcome of the recent studies. Continued efforts to measure and estimate concentrations
in multimedia sources—such as indoor air, indoor surfaces, dust, and consumer products—are required to
address uncertainty in near-field exposures and pathways.

Characterization of exposures during the toxicologically sensitive period of fetal development has
historically been limited to drawing inferences about maternal exposure through periodic maternal blood
and urine measurements. Responding to the need to improve the characterization of fetal exposures to
chemicals, researchers have turned to novel biological matrices, such as teeth, hair, nails, placental tissue,
and meconium. The growth properties (the sequential deposition or addition of tissue) and availability of
these biospecimens offer the opportunity to extract a record of exposure. For example, laser-ablation in-
ductively coupled mass spectrometry has been used to reconstruct the timing of shifts in primates’ diets
that are associated with weaning by measuring calcium:barium ratios in tooth enamel (Austin et al. 2013).
The same approach was recently shown to be promising for assessing in utero exposure to manganese.
Arora et al. (2012) measured manganese concentrations in tooth dentine specific to the postnatal period
and the second and third trimesters and showed a statistically significant relationship between house-dust

Prepublication Copy 29

Oct. 2018 EPA-HQ-2018-000065 ED_001487_00006414-00049



Using 21st Century Science to Improve Risk-Related Evaluations

manganese concentrations and dentine manganese concentrations during the second trimester. Those au-
thors and others (Andra et al. 2015; Palmer et al. 2015) have extended the methods to measure organic
chemicals, including phenols and phthalates. Like teeth, hair forms in utero (third trimester), continues to
grow, and potentially provides a temporal record of exposure. Initially used widely for forensic analysis
of exposure to illicit drugs, hair has emerged as an important matrix for biomonitoring of metals and or-
ganic chemicals, such as polybrominated diphenyl ethers (Aleksa et al. 2012; Liu et al. 2015a). Similar
methods have been applied to fingernails (Liu et al. 2015a).

Although the new matrices mentioned above have advantages and add valuable information to expo-
sure assessment, they pose challenges in interpretation and application. A common challenge in the use of
exposure measures based on the new biological and environmental matrices for quantitative exposure as-
sessment is the need to understand how measured concentrations are related to measures of exposure tra-
ditionally used to assess chemical toxicity or risk. Ideally, the new biomonitoring data can be supported
by information regarding how measured concentrations in new matrices are related to conventional
measures of internal exposure (serum concentrations, uM) or external exposures (mg/kg-day or mmol/kg-
day). New experimental data, such as chemical half-life in the body, and data related to events and pro-
cesses of exposure, such as time since the exposure, that can inform various relationships and pharmaco-
kinetic models will be useful in interpreting and reconstructing exposures by using the biomonitoring data
(see, for example, Lorber and Egeghy 2011; Ritter et al. 2011; Quinn and Wania 2012; Wambaugh et al.
2013; Aylward et al. 2014; Hays et al. 2015). The additional information regarding the exposures pro-
vides confidence in using the measured biomonitoring data and supporting the exposure narrative.

Physiologically Based Pharmacokinetic Models and Models for
Translating Exposure Between Systems

Physiologically based pharmacokinetic (PBPK) models have made substantial contributions to ex-
posure assessment for more than 30 years. PBPK models have been applied effectively to characterize
target-tissue exposure in test animals and humans, to characterize pharmacokinetic variability, and to ex-
trapolate across species, life stages, exposure routes, and, most recently, ecosystem elements (MacLach-
lan 2010; Weijs et al. 2012; Sonne et al. 2015). PBPK models now provide a common framework similar
to environmental fate and transport models for more integrative exposure assessment and are applied
more regularly to support aggregate (multiroute) exposure assessment (Esch et al. 2011; Abaci and Shuler
2015), exposure reconstruction from biomonitoring data, and exposure translation between in vitro and in
vivo test systems.

The use of PBPK models for exposure reconstruction, known as reverse dosimetry (Liao et al. 2007;
Tan et al. 2007; Bartels et al. 2012; Hays et al. 2012; McNally et al. 2012; Yang et al. 2012; Grulke et al.
2013), has led to important advances in the field of biomonitoring. Internal and external exposures can
now be related and predicted on the basis of more limited sets of exposure information—for example,
urine biomonitoring data (spot samples)—by applying principles of pharmacokinetics. The tools are used
to calculate or estimate margins of exposure to chemicals on the basis of blood or urine spot samples and
can be used to inform regulatory levels. New methods offer the ability to evaluate the influence of behav-
ior and physiological variability on exposure distributions (Shankaran and Teeguarden 2014).

The use of PBPK models to characterize the influence of biochemical and physiological variability,
particularly the role of polymorphisms of metabolizing enzymes in estimates of metabolism and variabil-
ity (Beaudouin et al. 2010; Bois ¢t al. 2010; Snoeys et al. 2016), has grown substantially and will contin-
ue to contribute to exposure assessment and risk assessment. Those advances help to predict pharmacoki-
netics of potentially sensitive populations, such as preterm infants (Claassen et al. 2015) and children
(Yoon et al. 2012). Recently, PBPK models have been applied to disentangle the role of physiological
changes related to discase states from the effects of a chemical on disease and to examine the role of re-
verse causation in published epidemiological studies (Verner et al. 2015; Wu et al. 2015). Accordingly,
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PBPK models have emerged as new exposure tools capable of supporting inference in epidemiological
studies.

One of the major developments concerning PBPK models has been their use for translating expo-
sures between test systems and human-exposure scenarios. In particular, the rapidly expanding use of
high-throughput in vitro cell and cell-free systems to characterize the bioactivity of chemicals and materi-
als, such as nanomaterials, has led to a need to translate in vitro exposure data into corresponding in vivo
exposures in test systems and humans. Various terms have emerged to describe the applications to do
so—for example, in vitro—in vivo extrapolation (IVIVE), reverse toxicokinetics (rTK), and reverse do-
simetry. Each describes a kinetics-based and partitioning-based approach to translating exposures from
one system of interest (in vitro) to another (in vivo animal or human), and all strive for mass balance. The
use of PBPK models and similar biokinetic models of in vitro test systems has produced important meth-
ods that can apply PBPK-modeling principles to a broad set of test systems (Rostami-Hodjegan 2012;
Yeo et al. 2013; Campbell et al. 2014; Teeguarden et al. 2014; Martin et al. 2015), including microphysio-
logical organ systems or human-on-a-chip systems (Esch et al. 2011; Abaci and Shuler 2015). However,
without clear understanding of how exposures in the systems are related to in vivo exposures or human
occupational or environmental exposures, their utility will remain limited, as has been the case for stand-
ard in vitro cell-culture and cell-free systems.

IVIVE models can be used to calculate human internal exposure concentrations of chemicals from
data obtained in high-throughput in vitro systems (Kesisoglou et al. 2015). That approach uses hepatocyte
cultures and other biotransformation systems to measure metabolic rate constants that are used to estimate
human intrinsic clearance by the liver, a dominant route of metabolic and total clearance in humans.
Clearance values can be obtained for different life stages or for populations that are resistant or vulnerable
because of polymorphisms of metabolic enzymes. Renal clearance, another major elimination pathway, is
often estimated by using data on glomerular filtration rates and measures of protein binding in serum
(Rule et al. 2004; Rotroff et al. 2010; Tonnelier et al. 2012; Wetmore et al. 2012). Other aspects of kidney
function, such as tubular processing, can also influence clearance rates (Weaver et al. 2016) and various
biomarker concentrations. Metabolism in other tissues, which can be important, is not evaluated, and this
is a limitation of the current state of these systems.® Combining clearance with computational high-
throughput methods for estimating average daily contact and intake rates makes it possible to predict in-
ternal concentrations expected in humans. Those concentrations can then be compared with effect levels
or no-effect levels from toxicity-testing systems. Addressing some limitations—such as not accounting
for metabolism by other tissues, for the potential role of transporters, or for human variability—will be
important next steps toward higher confidence in the application of the models. New approaches for better
understanding of metabolic and genetic determinants of exposure are detailed in the next section.

Key challenges in interpreting and applying IVIVE data include the quantification of relevant con-
centrations that correspond to observed in vitro bioactivity from assumed nominal (administered) concen-
trations (see Box 2-2 and Figure 2-3). A consistent approach for comparing and extrapolating results
could be the use of the free (dissolved aqueous) concentration in the test system because this metric can
be applied to cell-based or cell-free systems. The limitations complicate chemical comparisons for poten-
cy and toxicity and reduce confidence in the application of in vitro bioassay data that are based only on
nominal concentrations in risk-based assessments. Models to calculate in vitro concentrations that cannot
be readily measured with traditional sample extraction and analytical techniques need to be developed,
evaluated, and applied. Passive dosing and sampling techniques might prove useful in addressing the cur-
rent analytical challenges and associated uncertainties in quantifying exposures in smaller in vitro test
systems (Kramer et al. 2010).

The committee notes that over-prediction of serum concentrations of parent chemicals and under-prediction of
potentially important metabolites is generally a possible outcome of underrepresenting metabolism.
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BOX 2-2 Challenges in Estimating In Vitro Test Concentrations

Evidence is accumulating that the prevailing view that stressor concentrations in the in vitro systems
can be considered static and can be represented by nominal media concentrations is in many cases
not valid (Gulden and Seibert 2003: Gulden et al. 2006; Teeguarden et al. 2007; Kramer et al. 2012;
Armitage et al. 2014; Teeguarden et al. 2014; Groothuis et al. 2015). For example, nanomaterials, an
emerging class of poorly studied toxicants, undergo transformations (agglomeration and dissolution) in
liquid systems and size-dependent and density-dependent diffusion and sedimentation; each process
affects delivery of particles to cells in culture. The processes have been shown repeatedly to affect cel-
lular dose and can be expected to affect relative hazard ranking. Chemical concentrations.in an in vitro
test system can change as a function of the chemical properties, the test system, and time. Measured
and estimated dissolved and cell concentrations can be orders of magnitude different from assumed
(nominal) in vitro concentrations for various reasons, including chemical volatilization, differential distri-

bution in the test system (Heringa et al. 2004; Kramer et al. 2012; Armitage et al. 2014), metabolism
(Coecke et al. 2006; Groothuis et al. 2015; Wilk-Zasadna et al. 2015), and the reasons noted above.

Head space

DMS0
{if pregents

log Kaw

g% % " Test medium

Serum constituents 3

\ af ple%nt)

2 3 4 5 €6 7 8 8§ 10

log Kow
FIGURE 2-3 (Left) Hlustration of chemical distribution in an in vitro test system and (right) illustration of the
chemical depletion factor (DF = Comina/Caissolved) 10t @ typical cell-based in vitro test system as a function of chemical
partitioning properties. The octanol-water partition coefficient (Koyw) characterizes chemical partitioning from water
to nonaqueous constituents of the test system—such as cell membranes, proteins, plastic, and serum—and the air—
water partition coefficient (K,w) characterizes chemical partitioning from water into air or head space. In this case,
10% fetal bovine serum (FBS) is assumed present in the test system. The dotted lines (right) are the DFs correspond-
ing to the chemical-property combinations and indicate the order-of-magnitude differences that can occur between
assumed (administered or nominal) test concentrations typically used for dose—response calculations and the esti-
mated dissolved (free) concentration in the test system. Source: Armitage et al. 2014,

New Approaches for Assessing Biochemical and
Physiological Determinants of Internal Exposure

Metabolism, cellular transport, and other processes that control elimination and distribution of
chemicals in organisms are essential considerations and important challenges in exposure science, data
interpretation, and risk assessment. Metabolism is a key determinant of chemical residence time in the
body and can lead to more or less production of toxic chemicals; thus, it plays an important role in the
extent of exposure and chemical toxicity (Leung et al. 2012). Reliable measures of metabolic rates are

32 Prepublication Copy

EPA-HQ-2018-000065 ED_001487_00006414-00052



Advances in Exposure Science

essential for understanding and characterizing differences in metabolism among species and between in
vitro and in vivo test systems and for understanding the extent of variability and its effect on susceptibil-
ity or resistance. Computational approaches (PBPK, rTK, and IVIVE) can be used to translate in vitro
metabolic rates into estimates of chemical clearance (Wilk-Zasadna et al. 2015) and to quantify differ-
ences among species and systems for exposure assessment.

High-throughput in vitro assays can be used to investigate metabolism; they now cover many en-
zymes and isoforms involved in chemical metabolism, including the phase I cytochrome P450 enzymes
and a variety of phase I enzymes (admescope; Tolonen and Pelkonen 2015). Direct measures of activity
obtained from the assays complement genomic approaches for characterizing the influence of polymor-
phisms on metabolism. New proteomic tools that use chemical probes can also be used to measure meta-
bolic activity of specific enzymes directly in tissue and cellular preparations (Cravatt et al. 2008; Sadler
and Wright 2015). For example, recent publications (Crowell et al. 2013; Sadler et al. 2016) demonstrate
that activity-based probes provide better measures of relative enzyme activity for individual enzymes than
measures of transcripts or proteins and thus complement conventional metabolism assays. Other in vitro
metabolism test systems, such as ones that use hepatocytes and liver spheroids, and computational models
to translate metabolic rates and pathways to in vivo clearance continue to evolve (Fitzgerald et al. 2015;
Hutzler et al. 2015; Liu et al. 2015b). Higher-throughput systems for measuring and interpreting metabol-
ic rates in hepatocytes have been successful in extending our knowledge from pharmaceuticals to envi-
ronmental chemicals (Wetmore et al. 2014; Yoon et al. 2014). However, increasing capacity to synthesize
chemical standards and test materials will be essential if these approaches are to be successfully applied to
the many chemicals in commerce.

As basic hepatic-metabolism data grow, other limitations of the systems to predict chemical kinetics
and internal exposures will become important. Extrahepatic metabolism—such as metabolism in the kid-
ney, gastrointestinal tract, and lung—can be important but is not yet addressed in most extrapolations.
Similarly, differences in metabolic competence between the cells used in vitro and the in vivo systems
can affect the extent of metabolism, the metabolic pathways activated, and the metabolites produced (see,
for example, Kolanczyk et al. 2012). Emerging tools that can evaluate potential metabolite production
(Tolonen and Petkonen 2015; Wilk-Zasadna et al. 2015) and the use of multiple in vitro metabolism sys-
tems of varied complexity (Zhang et al. 2012) that include more than one tissue or cell type are possible
solutions to the challenges. QSAR models that can predict rates of metabolism and clearance in tissues,
such as liver and plasma (Berellini et al. 2012; Hsiao et al. 2013), and in the whole body (Obach et al.
2008; Wishart et al. 2008; Arnot et al. 2014) are also promising approaches for obtaining information on
metabolism.

Pharmacogenomic profiling has emerged as a valuable approach for characterizing individual and
population variabilities in genes that influence absorption, distribution, metabolism, and elimination
(ADME) of drugs and environmental chemicals. Variations in ADME processes are important sources of
variability in internal exposure. Recent advances in sequencing technologies (De Wit et al. 2015; Heather
and Chain 2015; McGinn et al. 2016) now offer unprecedented potential for rapid individual and popula-
tion-level identification of single-nucleotide polymorphisms that affect metabolic, transport, and clear-
ance processes that together influence individual internal-exposure profiles. Recently, the frequencies of
polymorphisms in 1,936 proteins that have documented clinical significance for ADME processes were
measured and characterized in a Thai population and compared with findings in other ethnicities
(Jittikoon et al. 2016). That and other recent analyses that show greater diversity in polymorphisms in
American blacks and other ethnicities (Li et al. 2014; Ortega and Meyers 2014) demonstrate the potential
for nearly comprehensive assessment of polymorphisms of ADME-related genes in individuals and popu-
lations and for internal-exposure predictions on an individual basis. More comprehensive characterization
of ADME-related and other polymorphisms in populations and improved understanding of their function
and relevance to exposure and toxicity will be valuable in addressing population variability for risk-based
decision-making. The committee notes that compartmental and PBPK models for predicting the resulting
effects on population distributions of serum concentrations have been used regularly but for only a few
metabolic enzymes (EPA 2010).
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Another important process to consider is cellular transport; transport proteins influence both tissue
and intracellular concentrations. Pharmaceuticals and environmental chemicals are substrates for trans-
porters (Fardell et al. 2011), and the importance of transporters in affecting internal chemical exposure at
target sites is recognized (Wambaugh et al. 2014). QSAR models for predicting chemical interactions
with transporters (Sedykh et al. 2013) and a variety of in vitro assays (Xie 2008) have been developed to
support incorporation of transporters into determinations of internal exposure.

Continued success in using the new tools described here for measuring and calculating biochemical
and physiological determinants of internal exposure will improve exposure assessment and ultimately will
support the successful integration of in vitro, computational, and in vivo approaches into risk assessment.

CONFIDENCE LEVELS IN EXPOSURE INFORMATION AND ASSESSMENT

Exposure data from traditional and emerging methods discussed above can be placed in categories
spanning the continuum from source to target-site exposure (Figure 2-4) (NRC 2012). Exposure
measures biologically closer to the site of action of the stressor can under some conditions have greater
value for linking exposures to effects. For example, the relationship between soil concentrations of a
chemical and effects in a population exposed to the soil might be obscured by individual differences in
exposure rate, activity patterns, and metabolism. In contrast, individual blood or tissue measures of chem-
ical exposure reflect the combined action of those processes and benefit from being more directly related
to the event that initiates adverse effects: interaction of the chemical with a biological receptor (organclle,
protein receptor, or DNA). However, soil and air measures of chemicals and biologics can be less con-
founded sources of information for assessing source contributions to external exposure because fewer
processes (absorption, metabolism, and human activity patterns) can obscure relationships between the
measured exposure in blood or urine and the source. The committee cautions, however, that internal ex-
posures are not universally better or universally more useful than external exposures for purposes of relat-
ing exposures and effects, for example, in epidemiological studies. A long history shows the utility of
measures of external exposure for epidemiology. In fact, external exposures might sometimes be superior
to internal exposures, for example, when the two are proportional to one another and external measures
are easier to acquire. Furthermore, external exposures might be the most biologically relevant when por-
tal-of-entry effects, such as skin sensitization, are the focus. Exposure measures should be carefully se-
lected by considering the strengths and limitations of external and internal measures of exposure and the
purpose for which they will be used. Ideally, exposure data are available across the entire spectrum illus-
trated in Figure 2-4, and approaches for connecting them quantitatively have been developed to enable the
use of exposures at any point on the continuum.

There is a spectrum of quality of exposure data from screening-level assessments based on limited
information to multiroute, multisource exposure assessments to population-scale longitudinal exposure
assessments that use validated exposure biomarkers. Important considerations for the application of expo-
sure data in decision-making are the quality of the data and the context in which the data will be used;
data quality can be determined by evaluating accuracy, integrity, suitability, transparency, and concord-
ance of multiple lines of data or evidence (WHO 2016). The degree of confidence that is required for ex-
posure data or exposure assessment is balanced with the cost of data acquisition and determined by the
decision context established in problem formulation. In some cases, screening-level exposure data that
have greater uncertainty might have sufficient accuracy to support important screening-level decisions
made by regulatory agencies and might provide the most cost-effective approach (WHO 2016; Wam-
baugh et al. 2013, 2014). In those cases, transparency is essential for providing understanding and confi-
dence in decisions that stem from exposure assessment; transparency can be obtained by carefully docu-
menting and reporting data quality, suitability, and integrity (WHO 2016). The use of computationally
derived exposure estimates that are based on sparse data is an example of possible applications. That ap-
proach might be used to make initial decisions to set priorities among stressors for improved exposure
assessment, toxicity assessment, or epidemiological assessment. The same data might also be useful for
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FIGURE 2-4 Exposure measurements are made along multiple points in the source-to-outcome continuum. The
value of exposure data for applications, such as source assessment and mitigation and assessment of public-health
effects, might depend on location on the source-to-outcome continuum. Careful consideration should be given to
selection of exposure measures by balancing cost, invasiveness, and relevance for the study. For example, although
internal exposures might be directly related to the event that initiates adverse effects, external measures of exposure
might be more relevant to portal-of-entry effects and have the benefit of being more cost-effective to collect. Source:
NRC 2012.

making initial decisions regarding new applications of a chemical or its inclusion in or removal from new
or existing products. In some cases, extensive uncertainty, sensitivity, and variability analyses of expo-
sure-assessment components might indicate that exposures of the magnitude necessary to cause effects
fall outside the range of plausibility, in which case such exposure estimates might have sufficient certain-
ty to support decision-making regarding potential risks. As the field moves toward obtaining exposure
data on thousands of chemicals in commerce and wider use of cost-effective screening-level analyses,
careful reporting of the quality of assessments and associated limitations—for example, through model
evaluation and sensitivity analysis—will have high priority. As computational exposure-measurement
tools are developed and used, their successful application in risk-based or exposure-based decision-
making as described above will involve passing the same quality assessments applied to environmental
measures of exposure, for example, by applying EPA or World Health Organization (WHO) guidance to
evaluate models (WHO 2005; EPA 2009, 2016a).

Guidance for evaluating exposure data and exposure assessments developed by WHO and EPA and
published in the literature focuses more on determining data quality than on establishing confidence in
integrating various data streams. For example, integrating emerging data streams (such as computational
exposure data) with conventional data (such as those derived from blood and urine biomonitoring and air
sampling) is not discussed. Figure 2-5 presents some general considerations for assessing quality of expo-
sure data and for integrating multiple data types. The four attributes for judging the quality of exposure
data outlined by WHO—appropriateness, accuracy, integrity and transparency—also apply to Figure 2-5,
but there is additional consideration of the strength of agreement between measures and of how each
measure is related to the others in the overall exposure narrative. Although computationally derived expo-
sure estimates might be perceived as warranting less confidence than direct measures, consideration of
factors related to appropriateness and accuracy might indicate that the computational estimates are of
higher quality. For example, direct exposure measures that are made with analytical methods that have
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not been validated, that are confounded by sample contamination, that are determined without accounting
for external-exposure intake rates and half-lives, or that lack temporal resolution necessary for their appli-
cation in some decision-making contexts might ultimately be less valuable than indirect or proxy
measures that are based on a validated exposure metric. Similarly, computationally derived exposure ¢s-
timates might be useful for some decision-making contexts, particularly when they are based on extensive
experimental data—including pharmacokinetics, total external exposure, and patterns of external expo-
sure—and show mass balance throughout the system. Confidence in any exposure assessment is increased
when there is concordance, consistency, or agreement between multiple methods of exposure assessment
and is greatest when directly measured exposures, indirect measures of exposure, and computationally
derived exposure estimates or simulations agree (McKone et al. 2007; Cowan-Ellsberry et al. 2009;
Mackay et al. 2011; Ritter et al. 2011; Teeguarden et al. 2013). Agreement between measured and pre-
dicted data streams builds confidence in each method of determination. Convergence between exposure
measurements (external and internal) and model simulation results (for example, overlap of concentra-
tions or probability distributions of concentrations) indicate higher confidence in an exposure estimate
and in resulting risk-based decisions. Although agreement between exposure measures might be a hall-
mark of quality and of the ideal, multiple concordant measures of exposure are not required to establish
levels of quality required for all decision-making contexts.

Consideration of the level of quality and confidence in exposure assessment in the decision-making
context will continue to be important, particularly as new exposure data streams emerge from personal
sampling data and from use of new exposure matrices, such as bone, teeth, and hair. The potential for us-
ing emerging exposure data streams is high, but without careful evaluation, comparison with other types
of exposure-assessment data, and a consistent effort to relate measurements to the appropriate level of
biological organization (for example, target site or source), confidence in their use or agreement on their
best application might be difficult to obtain.
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FIGURE 2-5 Confidence increases with more complete characterization of the exposure pathway and associated
exposure determinants. Confidence might be higher for direct measures of the stressor—for example, at the site of
action—but if such measures do not consider important modifying factors, confidence might be higher for surrogate
exposure measures or predicted exposure measures that do consider such factors. The greatest confidence occurs
when there is concordance between multiple exposure-estimation approaches or between multiple exposure
measures, especially when divergent exposure metrics are considered. The confidence that is required for exposure
data and assessments should be determined by data-acquision costs and the decision context; the highest levels of
confidence are not required for many decision contexts.
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Guidance has been developed to foster confidence, transparency, and reproducibility in calculated
data used for exposure and risk assessment. Specific guidance has been developed for QSAR models for
predicting chemical properties and toxicity (OECD 2007), for environmental fate and exposure models
(EPA 2009; Buser et al. 2012), and for pharmacokinetic models (McLanahan et al. 2012). As new expo-
sure metrics emerge, it will be important to develop guidance for integrating the various exposure
measures and to understand their value and relationships with each other.

APPLICATIONS FOR EXPOSURE SCIENCE

To provide practical guidance on the use of emerging exposure-science data streams for decision-
making, the following sections describe applications expected to have near-term and lasting influence on
exposure assessment and on risk-based decision-making (Box 2-3). Each application uses one or more of
the advances presented earlier in this chapter to provide a new basis for decision-making, to refine expo-
sure data, or to provide new forms of exposure data.

Aligning Exposures Between Test Systems and Humans

Comparison of biological responses across diverse experimental systems is nearly always an essen-
tial step in risk assessment. For example, risk assessors are faced with aligning toxicity data that are based
on disparate measures of exposure: nominal liquid concentrations or cell concentrations in in vitro sys-
tems and air concentrations, inhaled amounts, or administered doses in rodent studies and human biomon-
itoring studies. Specificity, sensitivity, and concordance of observed effects across the test systems under-
lie the value and strength of evidence supporting conclusions about hazard and risk associated with
exposure. To compare the responses from different test systems adequately, the exposures (concentra-
tions) need to be expressed in consistent (comparable) units and with due consideration for the matrix in
which the chemical is present. For example, a chemical concentration in whole blood that corresponds to
an in vivo response can differ from the total concentration in an in vitro test system that corresponds to a
related response, although the free (dissolved) concentrations in the aqueous phases in each system might
be equal. Thus, the alignment of exposures in the systems is one important step in comparing exposure—
response relationships across systems and evaluating concordance and consistency. As in vitro systems,
organotypic, or co-culture systems augment or replace traditional animal studies, biological effects are
compared over a more diverse array of assay systems and, from an exposure standpoint, over more types
of exposure. For example, the most biologically sound comparison of biological effects shown in a cell-
free assay, a cell-based assay, and an inhalation-exposure rodent study would involve comparisons of tar-
get-site exposures across all three systems: free-liquid concentrations in the cell-free assay, free cell con-
centrations in the cell-based assay, and free cell concentrations in the target cells of the rodent. As a prac-
tical matter, measured free-liquid concentrations in the in vitro assays and serum concentrations in rodent
assays or from human studies would typically be considered appropriate measures of exposure-based

BOX 2-3 High-Value Applications for Exposure Sciences

L+ Aligning exposures between test systems and humans

Ll Improving exposure assessment for epidemiological studies

L. Exposure-based screening and priority-setting

L ldentifying new chemical exposures for toxicity testing

.1 Predicting exposure to support registration and use of new chemicals
L Identifying, evaluating, and mitigating sources of exposure
L{ Assessing cumulative exposure and exposure to mixtures
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alignment of the biological effects. However, there are circumstances in which serum concentrations are
not good surrogates for tissue dose—for example, when transport proteins facilitate the uptake to and ef-
flux from the tissue (Koch and Brouwer 2012; Wambaugh et al. 2014). The committee emphasizes that
for any metric used to align exposure concentrations between systems, one should consider system condi-
tions that might influence the value or interpretation of the data. For example, is the chemical concentra-
tion determined under steady-state or dynamic conditions or is the chemical ionic, in which case pH must
be considered?

Each experimental system and human exposure situation has a unique set of processes that control
or influence the timing, duration, and extent of exposure at the site of action (see Figure 2-6). Many of the
processes are biokinetic and measurable with conventional approaches. Characterizing the processes in
each test system allows the measurement, calculation, or simulation of chemical exposure at a common
site of action. Consistent metrics of exposure, such as free or cell concentration, represent a possible ideal
for comparison across systems and do not have the limitations associated with nominal concentrations.
The chemical-activity approach has been proposed for ecological risk assessment (Mackay et al. 2011;
Gobas et al. 2015) because it can integrate various multimedia exposure data streams (measured and pre-
dicted) and toxicity data streams (in vitro and in vivo) into a framework with consistent units and might
be useful for human health evaluations. Other exposure metrics might be suitable for some decision con-
texts if they are adequately justified on the basis of pharmacokinetics, physical chemistry, and biology of
the end point of interest.
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FIGURE 2-6 Alignment of exposures across experimental toxicity-testing systems can be achieved by understand-
ing, measuring, and applying this information on the processes that control the time course of concentrations and
delivery of chemicals and particles to target cells in each system. Common target-cell exposure metrics could be
total or free concentrations, peak concentrations, or area under the concentration—time curve.
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Alignment of exposures between systems can be completed under data-poor and data-rich condi-
tions. High-throughput methods for estimating hepatic and renal clearance can provide data needed for
estimating human serum concentrations of chemicals that can be compared with cell-culture concentra-
tions. That approach reflects one extreme—the data-poor case—for which data limitations can be over-
come by focused, efficient in vitro and computational methods. Recently, an example of alignment of ex-
posures under data-rich conditions—those with data from in vitro assays, whole-animal studies, and
human biomonitoring—was published for systemic effects. Human urine and serum time-course concen-
tration data from multiple studies provided empirical pharmacokinetic data that showed a relationship
between serum bisphenol A (BPA) concentrations and urine BPA concentrations (Teeguarden et al. 2011,
2015; Thayer et al. 2015). The empirical relationships were used to calculate the range of human serum
concentrations expected in a population of more than 28,000 people on whom there were published bio-
monitoring urine data. The resulting range of serum concentrations was compared directly with liquid
concentrations in low-dose BPA cell-culture and aquatic studies (Teeguarden et al. 2013, 2015). Conclu-
sions concerning the probability of biological effects in humans were drawn by aligning exposures across
human biomonitoring and two divergent test systems—vertebrates and cell-culture systems—that used a
measure of exposure proximal to target-tissue exposure. Although the role of protein binding was not ad-
dressed in that example, the data and tools to do so for BPA and other estrogens have been developed for
rodent test systems and humans (Plowchalk and Teeguarden 2002; Teeguarden et al. 2005) and in vitro
test systems (Teeguarden and Barton 2004).

A separate set of challenges has prevented widespread alignment of particle and nanoparticle expo-
sures between in vitro and in vivo systems. The deposition of particles in the upper and lower airways of
rodents and nonhuman primate toxicity-testing systems and of humans is governed by physical processes
(gravity, diffusion, and impaction), breathing patterns, airway structure (size, branching pattern, and geome-
try), and particle characteristics (size, shape, and density). Similar processes affect gravitational and diffu-
sional transport and eventual particle deposition on target cells in liquid cell-culture systems and include
agglomeration capacity; particle size, shape, density, and agglomeration size and density; media height; and
diffusion (Teeguarden et al. 2007; Hinderliter et al. 2010; Cohen et al. 2014; DeLoid et al. 2014). Until re-
cently, toxicity data on particles from in vivo and in vitro systems were compared on different exposure
scales—for example, air concentrations and liquid cell concentrations (Sayes et al. 2007)—and this poten-
tially obscured relationships between biological effects in the systems. More recently, direct measurement of
target-cell doses has become more common. In addition, with the advent of computational tools that can
capture the unique kinetics of particles in solution (Hinderliter et al. 2010) and of supportive experimental
methods (Davis et al. 2011; Cohen et al. 2014), computational estimation of cellular doses in in vitro sys-
tems is becoming more common. With similar tools for measuring or calculating lung-tissue doses of parti-
cles after inhalation exposure (Anjilvel and Asgharian 1995; Asgharian and Anjilvel 1998; Asgharian et al.
1999, 2001, 2006, 2012; Asgharian 2004; Asgharian and Price 2007), approaches that allow comparison of
in vitro and in vivo models of experimental particle toxicity have emerged (Teeguarden et al. 2014). The
consistency of observed effects between the in vitro and in vivo systems might be revealed by making com-
parisons with a consistent, biologically relevant measure of exposure. For example, iron oxide nanoparticles
were shown to cause expression of the same cytokines in macrophages in vitro and in mouse lungs in vivo
when exposures were compared on a particle mass or cell basis.

Research in and development of new methods and more frequent application of existing methods to
produce consistent measures of biologically appropriate exposure for toxicity across various test and re-
ceptor systems is a potentially high-value application for exposure science.

Improving Exposure Assessment for Epidemiological Studies
Causal inference based on epidemiological evidence can be strengthened when information on health
outcomes is combined with clear measures of exposure at the biological site of action or a surrogate for the

site of action (such as serum) that is temporally related to the causative biological events. Although that as-
sertion is based on fundamental principles of pharmacology, it is not true that internal exposures are univer-
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sally better than external exposure for purposes of assessing associations or inferring causation. External-
exposure measures have been and will continue to be sufficient, and in some cases superior to internal-
exposure measures, for example, where portal-of-entry effects are involved or large population-scale expo-
sure assessments are necessary and internal-exposure assessments are impractical. Reducing or eliminating
exposure misclassification and broadening exposure assessment to identify new chemicals that might be
causative agents or confounders of existing associations would substantially strengthen the interpretation of
epidemiological studies and improve their value for public-health decision-making.

Several advances in the field of exposure science are particularly well suited for improving exposure
assessment for epidemiological studies. High-throughput targeted and nontargeted analytical-chemistry
tools and new matrices for exposure assessment (such as hair, teeth, and nails) are together expected to
offer more temporally relevant exposure assessment of many more chemicals and expand exposure as-
sessment over the full life span. Emerging high-throughput computational-exposure models of external
exposure will provide exposure estimates that complement those made through expanded biomonitoring
programs. Personal biomonitors and sensor wristbands (O’Connell et al. 2014a,b) offer an unparalieled
opportunity to characterize individual exposures and provide temporally and spatially resolved data for
understanding patterns of exposure, variability, and the role of behavior and activity levels on exposure.
PBPK models could improve exposure assessment by

T Reconstructing exposures from limited biomonitoring samples on the basis of pharmacokinetic
understanding (Tan et al. 2006, 2012; Yang et al. 2012).

T Translating external exposures or biomonitoring data into more biologically relevant internal ex-
posures (Teeguarden et al. 2013).

T Reducing the likelihood of reverse causation in epidemiological studies by more clearly delineat-
ing the sequences of chemical-induced physiological changes that lead to disease states (Verner et al.
2015; Wu et al. 2015)

O Accounting for population variability that is characterized directly or through the application of
pharmacogenomics approaches (Teeguarden et al. 2008; EPA 2010; Ginsberg ¢t al. 2010).

The greater availability of internal-exposure information obtained from direct biomonitoring of hu-
man populations or from a combination of computational tools would be of particular value by providing
human exposure concentrations at the site of action (tissue or blood). Such information could be com-
pared with measurements in animal and cell-culture studies and might enhance causal inferences derived
from epidemiological studies.

Exposure-Based Screening and Priority-Setting

Several exposure-based priority-setting approaches that benefit from the emerging exposure-science
tools and data streams have been developed. In an exposure-based approach, chemicals in the top expo-
sure category are assigned a higher priority for additional tiered toxicological, hazard, or risk assessment
than those in the low exposure category; this provides a reproducible, transparent, and knowledge-based
framework to inform decisions for testing priorities (Egeghy et al. 2011; Wambaugh et al. 2013, 2014).
The European Food Safety Authority and WHO have reviewed the threshold-of-toxicological-concern
(TTC) approach as a screening and priority-setting tool that can be used for chemical assessments in cases
where hazard data are insufficient and human exposure can be estimated (EFSA 2016). The TTC ap-
proach is used principally as a screening tool to assess low-dose chemical exposures and to identify those
on which further data are necessary for assessing human health risk.” In some cases following certain re-

"The committee notes that TTC approach depends on the set of chemicals used to establish the toxicity distribu-
tion that is used to derive the TTC value. The ability of the TTC approach to screen chemicals properly will depend
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quirements, “exposure-based waiving” for toxicity testing or “exposure-based adaptation of information
requirements” approaches can be considered under the European Registration, Evaluation, Authorisation
and Restriction of Chemicals legislation (Vermeire et al. 2010; Rowbotham and Gibson 2011). Exposure-
based waiving has also been used to propose acceptable exposure levels determined on the basis of gener-
alized chemical-toxicity data and without chemical-specific toxicity data. Such approaches might be use-
ful in making initial decisions about the public-health importance of chemical exposures in licu of com-
plete exposure and hazard data. Within the bounds of uncertainty and variability of the data, some
immediate decisions could be made about the low potential for risk posed by exposures below preselected
“critical levels” (Vermeire et al. 2010; Rowbotham and Gibson 2011). Cumulative exposures to chemi-
cals in specific classes might move some chemicals up in priority—an outcome of improved exposure
data. Structure-based alerts and TTCs can be applied in such screening contexts to complement the expo-
sure-based decision-making process. EPA recently demonstrated integration of nontargeted and targeted
chemical analysis of house-dust samples for exposure-based and bioactivity-based ranking of chemicals
for further biomonitoring or toxicity testing as shown in Figure 2-7 (Rager et al. 2016).

Biomonitoring data and environmental-monitoring data on most chemicals in commerce are missing
or insufficient for exposure-based decision-making. Application of advanced biomonitoring, personal
monitoring, and computational exposure-science tools described in this chapter can support high-
throughput screening-level exposure assessment and exposure-based priority-setting for later toxicity test-
ing. Exposure models can be applied to screen large numbers of chemicals in commerce and set priorities
among specific chemicals or chemical classes on which there are no or few toxicity-testing data
(McLachlan et al. 2014). Chemicals that have predicted high concentrations in humans and environmental
media can then be used to identify toxicity-data gaps and set priorities for toxicity-testing for risk-based
applications. The committee notes that priority-setting based only on exposure might assign a lower prior-
ity to chemicals that might be given a higher priority on the basis of toxicity or risk.
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on whether the toxicities of the chemicals of interest are well represented by the toxicities of the chemicals used to
establish the distribution.
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Translation of high-throughput data into risk-based rankings is an important application of exposure
data for chemical priority-setting. Recent advances in high-throughput toxicity assessment, notably the
ToxCast and Tox21 programs (see Chapter 1), and in high-throughput computational exposure assess-
ment (Wambaugh et al. 2013, 2014) have enabled first-tier risk-based rankings of chemicals on the basis
of margins of exposure—the ratio of exposures that cause effects (or bioactivity) to measured or estimat-
ed human exposures (Wambaugh et al. 2013, 2014; Wetmore et al. 2013, 2014; Shin et al. 2015). Build-
ing on work by Wetmore et al. (2012) and Rotroff et al. (2010), Shin et al. (2015) demonstrated a high-
throughput method for screening and setting priorities among chemicals on the basis of quantitative com-
parisons of exposure data with in vitro bioactivity data (bioactivity quotients); this is similar to the mar-
gin-of-exposure approach used in risk priority-setting. They used human intake rates estimated with com-
putational exposure models and toxicokinetic models for the in vitro—in vivo extrapolation of ToxCast
toxicity data and identified 38 of 180 chemicals for which total estimated exposures equaled or exceeded
the estimated oral dose expected to result in blood concentrations that cause a 50% response in an in vitro
toxicity-testing system. Population variability due to differences in metabolic capacity was incorporated
into the process (Wetmore et al. 2014). Screening-level exposure assessment was used to establish mar-
gins of exposure for that group of chemicals for purposes of priority-setting. The committee notes, how-
ever, that limitations of such analyses (see section “New Approaches for Assessing Biochemical and
Physiological Determinants of Internal Exposure” above) need to be taken into account. Although expo-
sure estimates that exceed in vitro effect estimates might not be conclusive evidence of risk and exposures
that fall below in vitro activities might not be conclusive evidence of no risk, the committee sees the po-
tential for the application of computational exposure science to be highly valuable and credible for com-
parison and priority-setting among chemicals in a risk-based context.

Human-exposure data on a much larger suite of chemicals than is now available would provide im-
portant new data for guiding selection of chemicals and exposure concentrations for hazard testing and
mechanistic toxicology. The rapid expansion and use of high-throughput in vitro methods for hazard as-
sessment and mechanistic studies presents a growing opportunity to test chemicals for bioactivity at hu-
man-exposure levels—levels lower than those typically used in traditional toxicity-testing studies. In vitro
test systems—which are less subject to statistical-power limitations, are less expensive, and have fewer
ethical considerations than whole-animal studies—might be better suited for testing exposures lower than
those in traditional animal studies. Recent animal studies, however, provide useful examples of applying
human exposure information to in vivo test systems. For example, recent studies have included exposures
at or near those experienced by humans in animal-testing protocols for genistein and synthetic estrogens
(NTP 2008; Delclos et al. 2009, 2014; Rebuli et al. 2014; Hicks et al. 2016). For those animal studies,
exposures were selected on the basis of measured serum concentrations obtained in pilot animal studies,
values estimated with pharmacokinetic models, and measured or estimated serum concentrations in hu-
mans. The use of target-tissue exposures or biologically relevant accessible proxies, such as serum, for
selecting can in some cases be of greater relevance than the use of external exposure measures. Thus,
there is an opportunity to apply many of the new tools described in this chapter—expanded biomonitor-
ing, new biological matrices, and high-throughput computational exposure models—as a guide for the
selection of exposures for use in toxicity testing (Gilbert et al. 2015).

Identifying New Chemical Exposures for Toxicity Testing

The totality of exposure that makes up the exposome includes registered chemicals that are used in
commerce, their environmental and metabolic degradation products, and endogenously produced chemi-
cals. Traditionally, hazard-testing paradigms focus on satisfying regulatory needs for supporting product
registration and contain guidelines for testing commercial chemicals, not their degradation products, me-
tabolites, or similar chemicals produced endogenously. Identification of chemicals that make up the latter
groups of untested chemicals has become a key goal of federally funded exposure-science programs, such

42 Prepublication Copy

Oct. 2018 EPA-HQ-2018-000065 ED_001487_00006414-00062



Oct. 2018

Advances in Exposure Science

as the Children’s Health Exposure Analysis Resource. Owing to advances in high-throughput nontargeted
analysis (Fiehn 2002; Park et al. 2012; Go et al. 2015; Mastrangelo et al. 2015; Sud et al. 2016), exposure
science is in a more effective position for discovery-based exposure assessment. Combined with envi-
ronmental-degradation studies to identify novel chemicals, higher-throughput targeted analytical methods
also contribute to overall exposure discovery for toxicity testing. For example, researchers in the Oregon
State University Superfund Research Program recently discovered novel oxygenated and nitrogenated
polycyclic aromatic hydrocarbons produced by conventional remediation methods and have subjected
these environmental degradation products to toxicity testing (Knecht et al. 2013; Chibwe et al. 2015;
Motorykin et al. 2015). In collaboration with academic scientists, EPA (Rager et al. 2016) recently
demonstrated a workflow for nontargeted analysis of house dust with a transition to targeted analysis
(measurement of specific target analytes) for ToxCast chemicals and use of frequency of detection infor-
mation on chemicals as exposure data for priority-setting shown in Figure 2-8 below. The committee sees
the use of nontargeted and targeted analysis as one innovative approach for identifying and setting priori-
ties among chemicals for additional exposure assessment, hazard testing, and risk assessment that com-
plements the current hazard-oriented paradigm.
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FIGURE 2-8 Workflow for nontargeted and targeted analysis of the house-dust exposome for chemical priority-
setting and testing. Abbreviations: DSSTox-MSMF, Distributed Structure-Searchable Toxicity Database-Mass Spec-
troscopy Molecular Formula; LC-TOF/MS, Liquid chromatography time-of-flight mass spectroscopy; and MS, mass
spectrometry. Source: Rager et al. 2016. Reprinted with permission; copyright 2016, Environment International.
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Predicting Exposure to Support Registration and Use of New Chemicals

About 1,000-2,000 chemicals are introduced into commerce each year (EPA 2004). For newly in-
troduced chemicals, exposure assessment means forecasting likely environmental concentrations or total
daily human exposures resulting from expected uses and is not a regular part of the decision-making pro-
cess. The case of methyl tertiary-butyl ether, a gas additive introduced without fate and transport calcula-
tions and later found to be widely distributed in the environment, is a poignant example of the value of
predictive exposure modeling (Davis and Farland 2001). A recent NRC report, 4 Framework to Guide
Selection of Chemical Alternatives, found that despite the known importance of exposure, many frame-
works for selecting chemical alternatives downplay its importance and focus on inherent hazards posed by
chemicals (NRC 2014). The committee that prepared the report recommended an increased emphasis on
comparative exposure assessment and stated that inherent hazard should be the focus only in cases where
the exposure routes and concentrations of the chemical of concern and its alternatives are not expected to
differ substantially; that is, equivalent exposures should not be automatically assumed. And, it recom-
mended greater reliance on physicochemical data and modeling tools, when high-quality analytical data
on exposure are unavailable, to aid in predicting the partitioning of contaminants in the environment and
the potential for their persistence, bioaccumulation, and toxicity. Although approaches that are based on
both hazard and exposure data are preferred, approaches that are based principally on exposure or hazard
data will continue to be valuable depending on the decision context.

Tools to predict chemical properties (environmental or tissue-partitioning properties), stability (deg-
radation and metabolism half-lives), and proposed use scenarios can be used to set parameter values for
exposure models that are used to predict concentrations in environmental media and humans, over life
spans, and on local and national scales. The estimated concentrations can guide selection of toxicity-
testing exposures and can be compared with emerging toxicity data for risk-based assessments. Green-
chemistry modeling initiatives can be applied to prescreen candidate chemicals according to the likeli-
hood of biodegradation (Boethling 2011). Candidate chemicals can also be screened by applying more
comprehensive methods that consider environmental fate and transport and various chemical use scenari-
os (release pattern and quantities) (see, for example, Gama et al. 2012). Confidence in the prescreening
methods will be greatest when the models and tools cover the applicability domain of the chemicals that
are being evaluated and when the tools have already been shown to be effective in predicting fate and
transport of chemicals that have similar properties (for example, structural similarity or similar use cate-
gories). Hence there is a need to test and evaluate exposure modeling tools and data streams systematical-
ly with existing commercial chemicals to foster confidence in applying the same and emerging tools for
new premarket chemicals.

Identifying, Evaluating, and Mitigating Sources of Exposure

For chemicals that have multiple relevant exposure pathways, it can be challenging to identify and
rank exposure sources for mitigation. Exposure models can be used to reconstruct and identify the
sources, behaviors, and pathways that are driving exposures to a particular stressor. Good examples of
emerging computational exposure tools that can be used to trace exposures to sources are exposure mod-
els for consumer products (Gosens et al. 2014; Delmaar et al. 2015; Dudzina et al. 2015) and exposure
models and frameworks that combine far-field and near-field pathways for aggregate human exposure
assessments (Isaacs et al. 2014; Shin et al. 2015). For example, Shin et al. (2014) combined exposure
models and human-biomonitoring data for nine chemicals to estimate the proportions of total production
volumes that are used in selected use categories that correspond to exposure pathways. The models can be
used to develop targeted strategies to reduce or virtually eliminate exposures to a particular stressor. For
some chemicals, such as those used in pharmaceuticals and personal-care products, the dominant expo-
sure pathways and chemical use rates are relatively obvious, and source mitigation, if necessary, might be
relatively straightforward.
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The combination of sensor technologies, including personal sensors, with GIS data systems offers
new capabilities to identify sources of exposure. Personal sensors—for example, cell-phone—based sulfur
oxide and nitrogen oxide sensors—use native GIS systems to collect real-time exposure data, which can
be used to identify locations with high exposures and the source locations that contribute to the exposures.
Remote sensing can identify high-exposure locations and source locations on a regional or population
scale by mapping pollutant concentrations and identifying exposure patterns that might be related to
sources.

Some chemicals and materials are poorly degraded and persist in the environment long after produc-
tion and use are stopped. Some of the highly persistent chemicals also have long residence times in the
human body. It can take years or decades for exposures to decline substantially after regulatory action is
initiated. Accordingly, highly persistent chemicals that show unacceptable risk should have high priority
for mitigation. Models and supporting experimental studies that screen for rates of chemical degradation
in environmental media and overall persistence in the environment and in humans can be used to identify
persistent chemicals before commercial use and prevent or mitigate potential exposure by finding alterna-
tives.

Emerging exposure-assessment tools can also be used to mitigate sources of exposure to chemicals
that cannot be identified confidently. Specifically, nontargeted analysis of environmental samples—air,
dust, water, and soil—can be combined with analysis of ecological or human biomonitoring samples to
select analytical features that represent internal exposures of potential concern. Geographical mapping of
relative concentrations or detection frequency in environmental and human samples can lead to source
identification that might in turn help to identify the chemical classes.

Assessing Cumulative Exposure and Exposure to Mixtures

Humans, animals, plants, and other organisms are exposed to numerous stressors that vary in com-
position and concentration over space and time. For the most part, traditional toxicity testing has been
conducted largely on single chemicals, so there are important uncertainties in assessing potential short-
term and long-term effects of exposures to a mixture. That issue is a well-recognized concern for chemi-
cal assessment. With advances in exposure data streams and the potential for high-throughput toxicity
screening, there are opportunities to address the uncertainty related to potential effects of mixture expo-
sures better. Measurements obtained from human tissue and from environmental media to which humans
are exposed can be used directly or indirectly to formulate environmentally relevant concentrations of
mixtures for toxicity screening and testing. For example, internal concentrations of persistent organic pol-
lutants from in vivo exposure of humans (silicone implants) were used to determine and test mixture tox-
icity in in vitro assays (Gilbert et al. 2015). It is also possible to use environmental-monitoring data (sam-
pled water concentrations) to formulate exposure mixtures for toxicity testing (Allan et al. 2012),
including approaches that consider population variability in responses to environmentally relevant chemi-
cal-mixture concentrations (Abdo et al. 2015). The substantial advances in analytical chemistry noted in
this report are producing more complete data on the extent of cumulative exposure to chemicals. Personal
sampling devices, such as wristbands and air-sampling devices, provide data on complex cumulative ex-
posures of individuals. -Omics tools appropriate for measuring the aggregate biological response to cumu-
lative exposures to chemical classes that act through similar mechanisms can be combined with measures
of real-world cumulative exposures to assess the effects of cumulative exposures more comprehensively.
Aggregate-exposure model calculations for individual chemicals could be combined to obtain estimates of
cumulative exposures to mixtures, for example, by using models of exposure to consumer products that
are supported by databases of chemical concentrations in the product and product-use rates. The expo-
sure-model calculations could be used to address mixture exposures and potential toxicity; this approach
would require mixture-toxicity data or mixture-toxicity models for risk-based assessment. For that case,
estimating exposure to a mixture of chemical stressors for risk-based assessments is theoretically possible.
The reliability of and confidence in the exposure calculations require further evaluation, and methods for
including metabolites and nonchemical stressors in cumulative risk-based evaluations are also required.
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CHALLENGES AND RECOMMENDATIONS FOR ADVANCING EXPOSURE SCIENCE

A principal objective of improving exposure science is to build confidence in exposure estimates by
addressing or reducing uncertainty in the estimates used to support risk-based decision-making. That ob-
jective is best met by developing and further integrating monitoring, measurement, and modeling efforts
and by harmonizing exposures among test systems, the multimedia environment, and humans. Incremen-
tally increasing the number of chemicals included in monitoring programs can help in evaluating and re-
fining exposure models and in developing new approaches to integrate exposure data and constitutes an
initial and pragmatic path. However, increased environmental monitoring alone will not be sufficient to
improve exposure science. Interpreting the monitoring data and appropriately applying exposure data in
risk-based evaluations will require continued complementary development and evaluation of exposure-
assessment tools and information, such as fate and transport models, PBPK models, and data on chemical
quantity and use, partitioning properties, reaction rates, and human behavior.

In this section, challenges and recommendations to advance exposure science are discussed further.
The points include some guidance initially presented in the ES21 report and some new, more pragmatic
points, specifically related to the application of exposure science to risk-based evaluations. The points
build on the advances and applications detailed in this chapter, which present key development opportuni-
ties for the field recommended by the committee. Generally, the recommendations and challenges cover a
continuum: preparation of infrastructure, collection of data, alignment of exposures between systems,
integration of exposure data, and use of data for priority-setting. The ES21 Federal Working Group (EPA
2016b) is particularly well-positioned to coordinate and support the recommendations outlined below by
further strengthening federal partnerships for the efficient development of exposure-science research and
by engaging with other stakeholders to address the challenges that face the development and application
of exposure information for risk-based evaluations. The committee notes that several recommendations
below call for developing or expanding databases. In all cases, data curation and quality evaluation should
be a routine part of database development and maintenance.

Expand and Coordinate Exposure Science Infrastructure to Support Decision-Making

Challenge: A broad spectrum of disciplines and institutions are participating in advancing exposure
methods, measurements, and models. Given the many participants in exposure science, most information
is fragmented, incompletely organized, and not readily available or accessible in some cases. Thus, the
full potential of the existing and emerging information for exposure-based and risk-based evaluations
cannot be realized. The committee emphasizes that the rapid growth in exposure science presents unprec-
edented opportunities for more efficient, complete, and holistic use of exposure information, especially if
the information can be well organized into a readily accessible format.

Recommendation: An infrastructure for exposure information should be developed to organize and
coordinate better the existing and rapidly evolving components of exposure science and ultimately to im-
prove exposure assessment. The infrastructure should be organized by using conceptual and systems-
based frameworks that are commonly used in exposure assessment and should facilitate the generation,
acquisition, organization, access, e¢valuation, integration, and transparent application and communication
of exposure information. The infrastructure might best be comprised of an Internet-based network of da-
tabases and tools rather than one database and could expand on existing infrastructure and databases.
Guidance for generating, evaluating, and applying exposure information (WHO 2005; EPA 2009) should
be expanded to enable inclusion of data in the databases.

Recommendation: Coordination and cooperation should be encouraged among the large network of
agencies, institutions, and organizations that produce and use exposure information for different but ulti-
mately connected and complementary objectives. Cooperation should increase the efficiency with which
the infrastructure described above is developed, and a common ontology of exposure science (Zartarian et
al. 2005; Mattingly et al. 2012; EPA 2016b) should continue to evolve to facilitate interdisciplinary com-
munication in the development and application of exposure information.
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Identify Chemicals or Other Stressors and Quantify Sources and Exposures

Challenge: Nontargeted analysis in environmental and human media indicates that there are many
unknown chemicals in complex uncharacterized mixtures to which humans are exposed. Analytical meth-
ods and standards are not available for most chemicals and degradation products, and this hinders the ca-
pacity to identify and quantify chemical exposures. Furthermore, uncertainty in source information—
product composition, chemical quantity, use, and release rate—is a major obstacle to exposure estimation
for most chemicals.

Recommendation: Current efforts to obtain and organize information on chemical quantities in and
rates of release from products and materials, particularly consumer products and materials in the indoor
environment, should be expanded substantially. Curated databases that contain analytical features that can
be used in chemical identification should be expanded, and increasing the availability of analytical stand-
ards for chemicals and their degradation products should have high priority. Ultimately, the capacity to
conduct targeted and nontargeted analyses to identify and quantify new and existing chemicals and mix-
tures in environmental media and humans should be increased.

Improve Knowledge of Processes That Determine Chemical Fate in Systems

Challenge: Understanding the influence of processes that control the fate, transport, and ultimately
concentration of chemicals in environmental compartments and in animal and cell-based test systems is
essential for characterizing and predicting exposures. Information on system properties, processes, and
transformation pathways that contribute to chemical exposure is nonexistent, incomplete, and incon-
sistent, and this limits the capacity for more comprehensive, quantitative exposure-based and risk-based
evaluations.

Recommendation: Databases of chemical properties and information on rates and processes that
control chemical fate in vitro, in vivo, and in environmental systems should be developed. Information is
needed, for example, on partitioning (distribution) coefficients, degradation and transfer rates, and meta-
bolic and environmental transformation pathways. Information might be obtained through experiments or
modeling.

Recommendation: Methods for measuring and predicting chemical transformation pathways and
rates in environmental media, biological media, and biological test systems should be developed and ap-
plied. The methods should be used to quantify human exposures to chemical mixtures (parent chemicals
and metabolites) over time and to interpret results from test systems in the context of actual human expo-
sures. In particular, knowledge of environmental, human, and test-system properties and conditions that
influence exposures should be improved. Human pharmacokinetic data on metabolism, chemical trans-
porters, and protein binding should be generated for chemicals in consumer products and food-related
applications to improve the interpretation of human biomonitoring data from urine, blood, and emerging
matrices.

Align Environmental and Test-System Exposures

Challenge: Aligning environmental exposures and information obtained from experimental systems
is a critical aspect of risk-based evaluation and is required for improving environmental epidemiology.
Various units of quantification, such as administered or unmeasured dose, are often applied, and assump-
tions, such as steady-state or equilibrium conditions, are made. However, pharmacokinetic and fate pro-
cesses and other factors often confound the interpretation and translation of exposure information be-
tween humans and the environment and experimental systems.

Recommendation: Concentrations in the test-system components should be quantified over time by
measurement, which is preferred, or with reliable estimation methods. Methods and models that explicitly
translate quantitative information between actual exposures and test-system exposures should be devel-
oped and evaluated.
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Recommendation: Chemical concentrations that reflect human exposures as derived from biomoni-
toring measurements or from predictive exposure models should be considered when designing testing
protocols for biological assays. Improving knowledge of processes that determine chemical fate in biolog-
ical and test systems will be necessary to meet this recommendation.

Integrate Exposure Information

Challenge: Integration and appropriate application of exposure data from environmental media, bi-
omonitoring samples, conventional samples (blood and urine), and emerging matrices (hair, nails, tecth,
and meconium) is a scientific, engineering, and big-data challenge. The committee emphasizes that inte-
gration of measured and modeled data is a key step in developing coherent exposure narratives, in evalu-
ating data concordance, and ultimately in determining confidence in an exposure assessment.

Recommendation: New interdisciplinary projects should be initiated to integrate exposure data and
to gain experience that can be used to guide data collection and integration of conventional and emerging
data streams. The projects might start as an extension of existing cooperative projects among federal and
state agencies, nongovernment organizations, academe, and industry that focus on integrating measure-
ments and models for improved quantitative exposure assessment. High priority should be placed on ex-
tending existing (EPA, CDC, and WHO) guidance on quality of individual exposure data and assessments
to include weighing and evaluating the quality of integrated experimental and modeled information from
multiple matrices and data streams.

Determine Exposure-Assessment Priorities

Challenge: All the many uses of exposure data—from selection of chemicals for use in new prod-
ucts to risk-based decision-making to exposure ranking—require exposure data, often for thousands of
chemicals, over time and space. Whether or not analytical methods are available for the chemicals, the
resources and time that are required for direct measures of exposure are not available, and resource-
intensive, high-confidence exposure measurements might not be necessary in some cases. A key chal-
lenge for exposure science is how best to focus resources on the highest-priority chemicals, chemical
classes, mixtures, and exposure scenarios.

Recommendation: Continued development of computational and experimental tools that maximize
the value of existing knowledge for estimating exposure should have high priority. Those approaches
might initially focus on selected near-field exposures that are known to be important, on chemical classes
that are of high interest because of data on biological effects, or on other objectives, such as exposure
ranking of members of a chemical class that are being investigated for use in new products.

Recommendation: Continued development of approaches for exposure-based priority-setting that
use uncertainty analysis to establish and communicate levels of confidence to support decision-making
should be encouraged. The need to improve models or data that are used for priority-setting should be
evaluated on the basis of the level of uncertainty and the tolerance for uncertainty in the decision-making
context. Uncertainty and sensitivity analyses should guide selection and priority-setting among data gaps
to be filled.
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Advances in Toxicology

The decade since the publication of Toxicity Testing in the 21st Century: A Vision and a Strategy
(NRC 2007) has seen continued advances in an array of technological and biological tools used to under-
stand human function and disease at the molecular level. Some advances were initially catalyzed by the
Human Genome Project, which of necessity required technological innovations and large-scale collabora-
tions to reach the ultimate goal of mapping the sequence of DNA. Other developments came from ad-
vances made by the pharmaceutical industry to screen for chemicals that have specific biological func-
tionality but minimal off-target effects. As a result of those advances, an era of big-data development and
of public access and data-sharing has arrived with ever-increasing data-storage capacity, computational
speed, and open-access software. Research has also become more multidisciplinary; project teams today
often include geneticists, toxicologists, computer scientists, engineers, and statisticians.

A number of advanced tools can now be used in toxicological and epidemiological research; some
examples are listed below.

71 Large banks of immortalized cells that are derived from lymphocytes and collected from different
populations worldwide are available for toxicological research.

T Genetically diverse mouse strains have been created by a multi-institution collaboration (the
Complex Trait Consortinm; Threadgill and Churchill 2012) and are available for medical and toxicologi-
cal research. They have been fully genotyped because of the relatively low cost of sequencing today, and
the sequence information is publicly available.

T Microarrays and next-generation RNA sequencing can reveal postexposure changes in the simul-
taneous expression of large numbers of genes (the transcriptome). Technologies are also now available to
profile the epigenome (epigenetic changes, such as methylation and histone modifications), the proteome
(proteins present in the cell), and metabolome (small molecules).

T Large compilations of a wide variety of biological data are publicly available, as is software for
data access, interpretation, and prediction. Text-mining tools applied to scientific-literature databases pro-
vide approaches for developing hypotheses on relationships between chemicals, genes, and diseases.

T Automated systems that use multiwell plates provide a high-throughput platform for measuring a
wide array of effects in cells and cellular components in response to chemical exposures. Automated,
multiwell testing can also be applied for rapid testing of zebrafish, vertebrates that are relatively genet-
ically homologous with humans.

T Computational advances have enabled the development of chemical-structure—based methods for
predicting toxicity and systems-biology models for evaluating the effects of perturbing various biological
pathways.

Some of the advanced tools could be used to address issues in toxicology and ultimately risk as-
sessment (see Chapter 1, Box 1-3). Some of the general risk-assessment questions to which the tools
could be applied are the following:

T Planning and scoping: Which chemicals should undergo comprehensive toxicological evaluation
first (that is, how should priorities be set among chemicals for testing)?

Tl Hazard identification: What adverse effects might a chemical have? For example, could it pose a
carcinogenic risk or affect kidney or reproductive function? If a data-sparse chemical has a structure or
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biological activity that is similar to that of a well-studied chemical, can the same types of toxicity be as-
sumed and, if so, at similar exposures? Are cellular-assay responses adaptive (or inconsequential) or har-
bingers of adverse effects in humans? Does the chemical operate through the same pathways or processes
that are associated with cancer, reproductive toxicity, or other adverse human effects?

T Dose—response assessment: How does response change with exposure? At what exposures are
risks of harm inconsequential? Is there a threshold exposure at the population level below which there is

no adverse effect?

T Mixtures: What are the hazards and dose—response characteristics of a complex mixture? How

does the addition of a chemical to existing exposure contribute to risk?

(1 Differential susceptibility and vulnerability: Are some populations more at risk than others after
exposure to a specific drug or environmental chemical? For example, are some more susceptible because
of co-exposures, pre-existing disease, or genetic susceptibility? Are exposures of the young or elderly of

greater concern?

Those risk-assessment questions provide the backdrop for considering the recent advances in toxico-
logical tools. Information obtained with the new tools can advance our understanding of the potential
health effects of chemical exposures at various points along the exposure-to-outcome continuum, shown
in Figure 3-1 below. The starting point along the continuum is the transformation of external exposure to
internal exposure, which was discussed in Chapter 2 of this report (see Figure 2-1). The ultimate goal is
prediction of the response of the organism or population to exposure, and different tools can be used to
probe or inform different places along that continuum. As noted in Chapter 2, although the continuum is
depicted as a linear path, the committee recognizes that multiple interconnecting paths are typically in-

volved in the continuum.
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FIGURE 3-1 Computational models and biological assays are shown with the exposure-to-outcome continuum to
illustrate where the models and assays might be used to provide information at various points in the pathway. The
clear portion of the bar for read-across and SAR models reflects the fact that connections are typically made be-
tween analogous chemicals for either the initial biological effect or the outcome. However, biological tools can also
probe the response at the cell or tissue level and provide support for read-across and SAR analyses. If sufficient data
are available, read-across and SAR analyses can be performed at various points along the exposure-to-outcome con-
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This chapter describes a variety of new assays and computational tools that are available for ad-
dressing risk-based questions, but it is not meant to be comprehensive. The chapter organization follows
the progression along the exposure-to-outcome continuum; the discussion begins with assays and compu-
tational tools that are relevant for probing interactions of chemicals with cellular components and ends
with ones that are relevant for predicting population-level responses. Understanding of pharmacokinetic
relationships is critically important in toxicological evaluations for many reasons—for example, to evalu-
ate whether exposures in in vitro cultures and in vivo assays are similar in magnitude and duration to ex-
posures that result internally in exposed humans; to extrapolate from high to low dose, from one exposure
route to another, and between species; and to characterize variability in internal human dose associated
with a given exposure. Advances in pharmacokinetic analyses and models were discussed in Chapter 2
and are not elaborated on further here. The chapter concludes with a discussion of challenges and offers
recommendations that should help to address the challenges.

The committee emphasizes that most Tox21 assays or systems were not developed with risk-
assessment applications as an objective. Therefore, understanding on how best to apply them and interpret
data in a toxicology context is evolving. For example, assay systems that were designed to detect agents
that have high affinity for or potency against a particular biological target might not be optimized to de-
tect agents that have moderate or low potency or that cause more than one effect. Some risk questions are
being addressed as data from high-throughput systems become more available. However, the usefulness
or applicability of various assays will need to be determined by continued data generation and critical
analysis, and some assays that are highly effective for some purposes, such as pharmaceutical develop-
ment, might not be as useful for risk assessment of commodity chemicals or environmental pollutants.

PREDICTING AND PROBING INTERACTIONS OF
CHEMICALS WITH CELLULAR COMPONENTS

Chemical interactions with specific receptors, enzymes, or other discrete proteins and nucleic acids
and promiscuous interactions, such as those between an electrophile and a protein or DNA, have long
been known to have adverse effects on biological systems (NRC 2000, 2007; Bowes et al. 2012). Accord-
ingly, the development of in vitro assays that probe molecular-level interactions of chemicals with cellu-
lar components has been rapid, driven partly by the need to reduce high attrition rates in the drug-
development process. Although various new assays have been developed, only a single assay—one that
evaluates the human potassium channel (hERG channel)’—has been integrated into new drug applica-
tions. Figure 3-2 illustrates some typical interactions with cellular components, and the following sections
describe how the interactions are being investigated.

Predicting Interaction by Using Chemical Structure

In recent years, predicting chemical interactions with protein targets on the basis of chemical struc-
ture has become much more feasible, particularly with the development and availability of open-access
data sources (Bento et al. 2014; Papadatos ¢t al. 2015). There are many published examples of computa-
tional models that have been developed to predict the interaction of a molecule with a single protein, most
notably models for predicting hERG activity (Braga et al. 2014) and interaction with the estrogen receptor
(Ng et al. 2015), but prediction of multiple interactions in parallel is now possible given available compu-
tational power. For example, Bender et al. (2007) used chemical similarity to predict the protein—chemical
interactions associated with a novel chemical structure with a reported average accuracy of over 92% with
some proteins and high selectivity; that is, only small numbers of active predictions were later shown to
be negative in vitro. Although most of the activities were predicted correctly, it was at the expense of a

'The blockade of hERG channel has been directly implicated in prolongation of the QT interval, which is thought
to play a role in the potentially fatal cardiac arrhythmia torsades de pointes.
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FIGURE 3-2 Exposure-to-outcome continuum with examples of types of interactions between biological molecules
and chemicals.

high false-positive rate (that is, large numbers of inactive chemicals were predicted to be active). Most of
the models have been built by using pharmaceutical candidates that have a high affinity for the particular
protein, but there are examples in the literature in which the same approaches have been applied to identi-
fy chemicals that bind a receptor with low affinity (see, for example, Hornung et al. 2014).

Research to improve the prediction of protein—chemical interactions continues apace. Lounkine et
al. (2012) used the similarity-ensemble approach—a method first published by Keiser et al. (2007)—and
predicted the activity of 656 marketed drugs with 73 protein targets that were thought to be associated
with clinical adverse events. The authors reported that about 50% of the predictions of activity were later
confirmed experimentally with binding affinities for the protein targets of 1 nM to 30 uM. Cheng et al.
(2012) evaluated chemical—protein interaction sets that were extracted from the ChEMBL database” by
using a computational method, multitarget quantitative structure—activity relationship (QSAR), that eval-
uates G-protein coupled receptors (GPCRs) and kinase protein targets. Sensitivities were reported to
range from 48% to 100% (average, 84.4%), and specificity for the GPCR models (about 99.9%) and the
kinases was high.

Assessing Interactions with Cell-Free Assays

Celi-free or biochemical assays have long been used to probe the interactions of chemicals with bio-
logical molecules, such as enzymes and hormone receptors, and their activity with these specific targets
(Bhogal et al. 2005). The assays can provide reliable and valid results with high agreement between la-
boratories and can be applied in low-, medium-, or high-throughput formats (Zhang et al. 2012a).

The US Environmental Protection Agency (EPA) is exploring the use of the commercially available
cell-free assays, run in high-throughput format, that were originally developed for preclinical drug evalua-
tion to assess environmental chemicals (Sipes et al. 2013). The panel selected by EPA measures various
activities, including binding to GPCRs, steroid-hormone and other nuclear receptors, ion channels, and
transporters. The panel also covers activation of kinases, phosphatases, proteases, cytochrome P450, and
histone deacetylases (Sipes et al. 2013). Roughly 70% of the assays are derived from human cells, 20%
from rat cells, and the remainder from other species.

A wide variety of celi-free assays that evaluate other targets have been developed and are being used
in pharmaceutical, biomedical, and academic laboratories (Xia et al. 2011; Mehta et al. 2012; Landry et
al. 2015; McKinstry-Wu et al. 2015). They are being used to probe a wide array of protein types and func-
tions, such as nod-like receptors, which are involved in immune and inflammatory responses (Harris et al.
2015), methyltransferases (Dong et al. 2015), and various membrane proteins (Wilcox et al. 2015).

*ChEMBL is a chemical database of biologically active molecules that is maintained by the European Bioinfor-
matics Institute of the European Molecular Biology Laboratory.
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The potency of the chemical’s interaction in vitro—measured, for example, as an ICsy or KI'—
provides information on the likelihood of an in vivo concentration high enough to permit observation of the
phenotypic response. The degree of inhibition or activation of the protein function that is required for a phe-
notypic response to be observed can vary widely and will depend partly on the nature and function of the
protein or enzyme. For inhibitors of GPCRs, the anticipated pharmacological response has been observed in
vivo at plasma concentrations less than or equal to 3 times the measured ICs, of the chemical in question
when corrected for plasma-protein binding (McGinnity et al. 2007). As a rule of thumb for pharmaceuticals,
a 100-fold margin between the measured ICs, or K1 in a cell-free assay and the circulating plasma unbound
Ciax has been considered adequate to represent minimal risk of toxicity (N. Greene, AstraZeneca, personal
commun., December 14, 2015). However, for environmental chemicals, which are not tested in clinical tri-
als or followed up through medical surveillance, a different rule of thumb might be appropriate. And it is
important to remember that toxicity is influenced by many factors, including the required degree of receptor
occupancy, the ability of the chemical to reach the site of action (for example, to penetrate the blood—brain
barrier), the nature of the modulatory effects (for example, inhibitor, agonist, or allosteric modulator), the
kinetics of the binding of the interaction with the receptor, and exposure duration.

CELL RESPONSE

Cell-based in vitro assays have existed for nearly a century; the first publication of a dissociated cell
culture was in 1916 (Rous and Jones 1916). Cell-culture technology has evolved to the point where many
cell lines are available and more can be produced with current techniques. Cell cultures provide easy
measurement of gene and protein expression and a variety of potentially adverse responses (see Figure 3-
3) and can be scaled to a high-throughput format (Astashkina et al. 2012). Additionally, cell-based assays
derived from genetically different populations can allow rapid assessment of some aspects of variability
in response to chemical exposures that depend on genetic differences (Abdo ¢t al. 2015).

Cell-based assays are being used to inform hazard identification and dose—response assessments,
mostly as a complement to data from whole-animal or epidemiological studies to address questions of
biological plausibility and mechanisms of toxicity. For example, in evaluations of chemical carcinogenici-
ty, the International Agency for Research on Cancer (IARC) gives weight to functional changes at the
cellular level (IARC 2006) and considers the relevance of the mechanistic evidence with regard to key
characteristics of cancinogens (Smith et al. 2016). Cell-based assays have been critical in the IARC as-
sessments (IARC 2015a,b). Human-derived and animal-derived cell cultures have also been used to dis-
cern dose—response relationships and toxicogenomic profiles, for example, for ethylene oxide responses
(Godderis et al. 2012). The assays have potential use in addressing many of the risk-based questions
raised at the beginning of this chapter and as illustrated in Chapter 5.

' e o Inloactioe
Exdemnel 4 with Hiologiedl Cell resporse
BExposire Expostire Exposure nolecilles

+ Vigbilty
«  Apoplosis

«  Necrosis

«+  Proliferation

« Gene
expression

+ Protein
stabilization

« Bwyre
nduction and
nhibition

FIGURE 3-3 The exposure-to-outcome continuum with examples of cell responses.

’ICs, is the concentration required to cause 50% of the maximal inhibitory effect in the assay, and K1 is the inhi-
bition constant for a chemical and represents the equilibrium constant of the dissociation of the inhibitor-bound en-
zyme complex.
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Cell cultures can be grown in a variety of architectures, including monolayer and 3-D cultures of
cell lines, and can be used as indicators of possible tissue, organ, and sometimes organism-level signs of
possible toxicity, particularly in integrated systems that consider effects and signaling among cell types
(Zhang et al. 2012a). They can be used to evaluate a number of cellular processes and responses, includ-
ing receptor binding, gene activation, cell proliferation, mitochondrial dysfunction, morphological or
phenotypic changes, cellular stress, genotoxicity, and cytotoxicity. Various techniques and measure-
ments—such as impedance, gene transcription, direct staining, reporter-gene output, and fluorescence or
bioluminescence resonance energy transfer—can be used to measure cellular responses and processes (An
and Tolliday. 2010; Song et al. 2011; Asphahani et al. 2012; Smith et al. 2012). Furthermore, simultane-
ous measurements of multiple toxic phenotypes are possible with high-content imaging and other novel
techniques. This section describes some of the recent developments in using cell-based assays to evaluate
cellular response and emphasizes advances that can improve toxicology and risk assessment.

The committee notes that cell-based assays have some limitations; one key concern involves meta-
bolic capabilities. Specifically, do the assays capture how exogenous substances are metabolized in the
body? That particular limitation might not be a concern for assays that are performed with low-throughput
methods in which it might be possible to determine a priori whether metabolism is important for toxicity
and, if so, to find ways to test the metabolites in addition to the parent chemicals. However, little or no
metabolic capacity is a particular concern for high-throughput systems that are used for priority-setting.
Parent chemicals and metabolites can differ substantially in toxicity and potency. If the in vitro assays do
not sufficiently capture critical metabolites that form in humans, they might not give valid results for as-
sessment because they are not testing the chemicals that potentially give rise to toxicity. Furthermore,
although some assay systems might capture metabolism in the liver, extrahepatic metabolism might be the
driver of some chemical toxicity, so the spectrum of relevant in vivo metabolic activation is an important
consideration in understanding the validity of in vitro studies and interpreting the results from both in
vitro and in vivo studies. EPA, the National Institute of Environmental Health Sciences, and the National
Center for Advancing Translational Sciences are awarding research grants to make progress on the issue.
For example, a multiagency collaborative announced in 2016 a $1 million competition in the Transform
Tox Testing Challenge: Innovating for Metabolism; the challenge called on innovators to identify ways to
incorporate metabolism into high-throughput screening assays (EPA/NIH/NCATS/NTP 2016). EPA is
also attempting to develop a system that encapsulates microsomal fractions of human liver homogenate in
a matrix, such as an alginate, that will allow diffusion of low-molecular-weight chemicals but retain the
toxic lipid peroxides. As an alternative approach, EPA is attempting a method that would transfect cells
with mRNAs of enzyme-encoding genes to increase metabolic transformation intracellularly. The com-
mittee views those initiatives as steps in the right direction and emphasizes the importance of addressing
the issue of metabolic capacity.

Primary Cells

Primary cells are isolated directly from fresh animal or human tissue. They can be obtained from a
wide variety of tissues, such as liver, brain, skin, and kidney; and they are amenable to high-content
screening and analysis (Xu et al. 2008; Zhang et al. 2011; Thon et al. 2012; Raoux et al. 2013; Tse et al.
2013; Valdivia et al. 2014; Feliu et al. 2015). Although primary cells are more reflective of in vivo cellu-
lar and tissue-specific characteristics than are immortalized cells (Bhogal et al. 2005), they can be short-
lived in culture and suffer from rapid dedifferentiation within hours to days.

Several approaches to adapt primary cell culture to a high-throughput format for chemical-toxicity
testing have been made (Sharma et al. 2012; Berg et al. 2015). For example, EPA profiled over 1,000
chemicals (Houck et al. 2009; Kleinstreuer et al. 2014) to identify activity in eight primary cell systems,
including ones that used fibroblasts, keratinocytes, and endothelial, peripheral blood mononuclear, bron-
chial epithelial and coronary artery smooth muscle cells. With proprietary software, chemicals were clus-
tered by bioactivity profiles, and some possible mechanisms of chemical toxicity were identified. The
lack of publicly available datasets with which to compare the results and the complexity of the resulting
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data precluded sensitivity and specificity calculations (Kleinstreuer et al. 2014). The standard by which to
judge construct validity—that is, whether an assay system as a whole adequately represents the target bio-
logical effect—still poses a challenge for these and other assays described in this chapter (see “Challenges
and Recommendations for Advancing Toxicology” later in this chapter).

A major advance in primary cell culture over the last decade is the development of 3-D cultures of
cell lines.* 3-D cell cultures have better behavior and function than the monolayer cultures (van Vliet
2011) and are of increasing interest in the development of cancer drugs because they recapitulate the tu-
mor microenvironment to a much greater extent than do conventional monolayer assays that use a flat
layer of cells (Edmondson et al. 2014; Lovitt et al. 2014). A number of assays that use 3-D cultures of
primary cells from various tumors have been developed. Several studies (Arai et al. 2013; Chen et al.
2014) have shown some degree of drug resistance to well-characterized cancer drugs, depending on assay
type; 3-D assays show greater drug resistance.

Similarly, primary isolated hepatocytes are the most widely used for in vitro testing, and 3-D culture
systems with added cofactors are being developed to overcome limitations of conventional monolayer
systems (Soldatow et al. 2013), which notably include lack of sensitivity for detection of hepatotoxic
drugs. The 3-D cultures that are used, for example, for enzyme induction or inhibition studies, maintain
function for a relatively long period (1-3 days) and can be used to re-establish cellular polarity that is lost
in monolayer cultures. Advances in liver-culture techniques and technology have led to improvements
and greater complexity in 3-D liver-cell culture for use in toxicological evaluations, and the next step is
development of a bioartificial liver, commonly referred to as an organ-on-a-chip, discussed in greater de-
tail below in “Tissue and Organ-Level Response”.

The examples of tumor-cell and liver-cell cultures discussed in this section highlight the movement
from monolayer cultures to improved 3-D cultures of greater complexity and ultimately toward organo-
typic models for various tissues and organs (Huh et al. 2011; Bulysheva et al. 2013; Guiro ¢t al. 2015).

Immortalized Cell Lines

Immortalized cell lines can be derived from isolated human cancer cells or from primary cells that
have been genectically altered for enhanced longevity and resilience in tissue culture. Immortalized cell
lines do not need to be isolated and harvested for each use, are relatively easy to maintain and propagate,
are stable when replated multiple times, and can be easily frozen and shared between laboratories and
grown in large quantities. Cloning immortalized cells enables testing in genetically identical cells, and
immortalized cell lines that are derived from diverse populations allow inquiry into the variability of
chemical toxicity among populations (Abdo et al. 2015). However, more than the conventional monolayer
cultures of primary cells, immortalized cell lines can lose native in vivo properties and functionality. They
can have altered cellular polarity (Prozialeck et al. 2003; Soldatow et al. 2013), non-native genetic content
(Yamasaki et al. 2007), and decreased amounts of key cellular features (such as ligands, transporters, and
mucin production); and they can be contaminated with other cell lines, such as HeLa and HepG2. Altera-
tions in cellular phenotype can result in insensitivity to and mischaracterization of test chemicals. For ex-
ample, when testing the difference between mitochondrial toxicity observed in renal proximal tubule cells
(primary cells) and that observed in immortalized human renal cells, researchers found that primary cells
were capable of identifying more possible toxicants than were immortalized cell lines (Wills et al. 2015).

Many of the assays in the federal government’s ToxCast and Tox21 programs use immortalized car-
cinoma-derived cell lines (T47D breast, HepG2 liver, and HEK293T kidney). The assays have shown po-
tential for identifying chemical carcinogens found in rodents (Kleinstreuer et al. 2014) and for exhibiting
some predictive ability in the preliminary classification of hepatotoxic chemicals in guideline and guide-
line-like animal studies (Liu et al. 2015). However, the assays have also been shown to be unable to pre-
dict some well-recognized hazards observed in humans or animals (Pham et al. 2016; Silva et al. 2015).

3-D culture is a generic term that is used to describe culture systems that are grown on some sort of support or
scaffold, such as a hydrogel matrix. 3-D cultures often have two or more cell types.
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ToxCast data have been proposed for use in predicting in vivo outcomes of regulatory importance
(see Rotroff et al. 2013; Sipes et al. 2013; Browne et al. 2015), such as estrogenic properties of chemicals
predicted by the uterotrophic assay, but their use as replacement assays has been the subject of research
and discussion. For example, EPA’s Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) Sci-
ence Advisory Panel recommended that the agency not replace the uterotrophic assay with a computa-
tional model of estrogen receptor agonist and antagonist activity derived from ToxCast data (EPA 2014a).
Although the panel noted a number of strengths of the model, it had concerns about diminished perfor-
mance of the model for nonreference chemicals and the inability of the model to assess chemicals that had
modified toxicity because of pharmacokinetic factors or that had toxicity pathways different from those
evaluated in the assays. Thus, the panel found that further research was needed. More recently, EPA re-
considered the results of a high-throughput battery of estrogenicity assays, concluded that the test battery
is a satisfactory replacement of the uterotrophic assay for tier 1 endocrine-disrupter screening, and intends
to use the results of the test battery to evaluate and screen chemicals in the future (Browne et al. 2015;
EPA 2015).

Because immortalized cell lines are limited in the degree to which they can represent cells in intact
tissues, alternative approaches of cell immortalization have been developed and are now being made
commercially available. “Conditionally immortalized” cell lines that can undergo differentiation are in-
creasingly available for use in biomedical research with potential applications in toxicology (Liu et al.
2015).

Stem Cells

Advances in stem-cell research have allowed the generation of a wide array of cell types, some of
which have metabolic competence, which makes them useful for studying the effects of chemicals on var-
ious tissues (Scott et al. 2013; Gieseck et al. 2015). Fit-for-purpose stem-cell-based tests are becoming
commercially available (Anson et al. 2011; Kolaja 2014), and research is under way to develop stem cells
for application in toxicology (Sjogren et al. 2014; Romero et al. 2015). For example, an in vitro murine
neural embryonic stem-cell test has been advanced as an alternative for a neurodevelopmental toxicity test
(Theunissen et al. 2012; Tonk et al. 2013). The ability to grow rapidly, manipulate, and characterize an
array of cell types makes stem cells potentially useful for chemical-toxicity evaluations. Furthermore, as-
says that use stem cells harvested from genetically diverse populations show considerable promise for
providing information that can help in addressing hazard and risk-assessment questions.

Stem cells of potential use in toxicology research are of three primary types: embryonic, adult, and
induced pluripotent stem cells. Embryonic stem cells are harvested from embryos that are less than 5 days
old and have unlimited differentiation ability. Adult stem cells are isolated from adult bone marrow, skin,
cord blood, heart tissue, and brain tissue. Induced pluripotent stem cells (iPSCs) are produced from adult
somatic cells that are genetically transformed into a pluripotent state (Takahashi et al. 2007). iPSCs are
similar to embryonic stem cells (pseudoembryonic) and can be grown in monolayer and 3-D structures for
multiple generations. They can take on a variety of cell types, including neuronal cells (Malik et al. 2014;
Sirenko et al. 2014a; Efthymiou et al. 2015; Wheeler et al. 2015), hepatocytes (Gieseck et al. 2014; Si-
renko et al. 2014b; Mann 2015), and cardiomyocytes (Sinnecker et al. 2014; Karakikes et al. 2015). The
ability to be derived from adult cells and the capacity to differentiate into multiple cell types also make
iPSCs particularly promising for exploring human diversity. Cells can be created from specific individu-
als to produce personalized biomarkers, and iPSCs derived from large patient populations (Hossini et al.
2015; Mattis et al. 2015) could help to identify pathways involved in disease and susceptibility (Astash-
kina et al. 2012). Because iPSCs are relatively cost-effective to produce on a large scale (Beers et al.
2015), they have the potential to improve cell-based toxicity testing substantially.

There are some challenges to overcome in using stem cells. They can have different expression pro-
files, which indicate that they might have altered cellular processes, pathways, and functions. Stem cells
generally can be difficult to culture and transfect, and the difficulties could limit their application in high-
throughput formats. The lack of systematic approaches for characterizing and standardizing culture prac-
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tices (such as characterizing cell types, sex origin, and cell function) also presents an obstacle for using
stem cells in toxicology applications. Although stem cells (and other cells) have inherent limitations, they
are still useful windows into biological processes at the cellular and molecular levels and remain useful
for assessing chemical toxicity. A careful evaluation of cell phenotype and properties would help to de-
termine the extent to which human biology is recapitulated in the cellular model.

Modeling Cellular Response

Over the last decade, numerous mathematical models and systems-biology tools have been advanced
to describe various aspects of cell function and response. Considerable progress has been made in describ-
ing feedback processes that control cell function. The development of cell-based modeling has benefited
greatly from coordinated contributions from the fields of cell biology, molecular biology, biomedical en-
gineering, and synthetic biology.

A few simple structural units that have specific functions and appear repeatedly in different species
are referred to as network motifs (Milo et al. 2002; Alon 2007). Molecular circuits are built up from net-
work motifs and carry out specific cellular functions, such as controlling cell-cycle progression, xenobi-
otic metabolism, hormone function, and the activation of stress pathways—the major pathways by which
cells attempt to maintain homeostasis in response to chemical and other stressors, such as oxidative stress,
DNA damage, hypoxia, and inflammation. Computational models are used to examine those circuits, the
consequences of their activation, and their dose—response characteristics.

Toxicity pathways defined in NRC (2007) as cellular-response pathways can be thought of as mo-
lecular circuits that, when sufficiently perturbed, lead to adverse effects or toxicity. The circuits can be
modeled with computational systems-biology approaches. The tools for describing the circuits and func-
tion are developing rapidly (Tyson and Novak 2010; Zhang et al. 2010) and should enable study of the
dose—response characteristics of the perturbation of toxicity pathways (Simmons et al. 2009; Zhang et al.
2014, 2015). Quantitative descriptions of the pathways hold the promise of characterizing differences in
individual susceptibility to chemicals at the cellular level but will require identification of components of
signaling pathways that differ among individuals; sensitivity and other analyses can be applied to deter-
mine components that most affect human variability in adverse response. Confidence in the models will
increase as they are applied to a more diverse suite of signaling pathways. Model refinement coupled with
careful collection of data on detailed biological responses to chemical exposure will test model structures,
refine experimental strategics, and help to chart new approaches to understanding of the biological basis
of cellular dose—response behaviors at low doses.

TISSUE-LEVEL AND ORGAN-LEVEL RESPONSE
The last decade has seen advances in engineered 3-D models of tissue and computational models for

simulating response at the tissue level (see Figure 3-4). This section describes organotypic models, organ-
on-a-chip models, and virtual-tissue models that might be particularly applicable for toxicology research.
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FIGURE 3-4 Exposure-to-outcome continuum with example of tissue and organ effects.
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Organotypic Models

An organotypic model is a specific type of 3-D culture in which two or more cell types are put to-
gether in an arrangement intended to mimic, at least in part, an in vivo tissue and that therefore recapitu-
lates at least some of the physiological responses that the tissue or organ exhibits in vivo. Organotypic
models of skin, which contain keratinocytes and fibroblasts, have been developed and validated for use as
alternative models for testing skin irritation (Varani et al. 2007), and data from these models are now ac-
cepted in Europe for classification and labeling of topically applied products (Zuang ¢t al. 2010). The skin
model is being evaluated to improve the specificity of in vitro genotoxicity testing. Organotypic skin cul-
tures appear to have reasonably good concordance with in vivo genotoxicity results (Pfuhler et al. 2014)
probably because they retain the ability to metabolize and detoxify chemicals and because the rate of de-
livery of chemicals to the basal layer is more comparable with the kinetics of dermal absorption in vivo.
Other organotypic models include eye, lung epithelium, liver and nervous system tissue (see NASEM
2015). The effects of environmental chemicals have been explored in mouse organoids by using proteo-
mic tools (Williams et al. 2016).

Organ-on-a-Chip Models

An emerging scientific development is the organ-on-a-chip model (see Figure 3-5), which is a 3-D
culture grown in a multichannel microfluidic device (Esch et al. 2015). The models are meant to have the
same functionality as organotypic cultures but with the ability to manipulate physiological and pharmaco-
kinetic processes (that is, the rate at which a chemical is introduced via the flow-through channels). Sev-
eral organ-on-a-chip models have been engineered, including ones for liver, heart, lung, intestine, and
kidney. The models allow the study of how chemicals can disrupt an integrated biological system and
how the disruption might be influenced by the mechanical forces at play in the intact organ, such as the
stretching of the alveolar-capillary barrier in lungs due to the act of breathing.
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Attempts have been made to design platforms that have different organ mimics arranged in series or
parallel that as a system can recapitulate aspects of tissue interactions and in vivo pharmacokinetics (Sung
and Shuler 2010). A long-term goal is to introduce a parent chemical into the system and have it move
through a liver compartment where it would be metabolized, flow to compartments that contain respon-
sive cell types or to other compartments that contain hydrophobic materials that represent fat, and finally
flow through a kidney compartment where it could be ¢liminated. To date, microfluidic platforms that
have that much complexity have not yet been introduced in practice and have not achieved a realistic me-
tabolite distribution through the various tissues in the system (Andersen et al. 2014).

Researchers face challenges in developing such experimental platforms, for example, with the syn-
thetic materials used in the manufacture of the cell-culture substrates. They often are not good mimics of
the extracellular matrix and can even absorb small hydrophobic molecules (Wang et al. 2012); that ab-
sorption might exert an undue influence on the physiological system or alter chemical concentrations.
Large-scale manufacture and high-throughput operation of organ chips also present challenges to the
adoption of the technology. Similarly, access to sustainable sources of human cells presents a substantial
hurdle for reproducibility and interpretation of the data produced.

Microsystems that are composed of multiple synthetic organ compartments are in the early stages of
development, and a number of initiatives are going on to validate model correlations with in vivo obser-
vations. For example, the National Center for Advancing Translational Sciences has a number of efforts
in this field (NCATS 2016), and the European Union—funded initiative Mechanism Based Integrated Sys-
tems for the Prediction of Drug Induced Liver Injury (EU 2015) has also been exploring the use of liver-
chip models to predict adverse effects of drugs. Organ-on-a-chip models are promising, but they are not
yet ready for inclusion in risk assessments.

Virtual Tissues

As discussed ecarlier, computational systems biology might be used to describe pathway perturba-
tions that are caused by chemical exposures and the resulting cell responses. Such modeling can be ap-
plied to multiple processes that operate in sequence or parallel and used to link cellular responses to tis-
sue-level responses. Modeling feedforward and feedback controls through sequential dose-dependent
steps also enable the examination of responses to toxicant exposure that require multiple cell types, such
as Kupffer cell-hepatocyte interactions involved in hepatocyte proliferation. Feedback and feedforward
control might also contribute to intercellular patterns of response that require input from earlier pathway
or cellular functions to activate or inhibit integrated multicellular responses. The cellular responses alter
tissue function; the quantitative modeling then focuses on the interface between the cellular-level compu-
tation models and virtual-tissue models.

EPA’s Computational Toxicology Program has developed mathematical models called virtual tis-
sues for the embryo and the liver (Shah and Wambaugh 2010; Wambaugh and Shah 2010). EPA also has
developed a model of blood-vessel development. Virtual-tissue models can use “agent-based” modeling
of different cells in the tissue, which relies on and mathematically describes key aspects of cellular behav-
ior or other tissue components to derive the properties of the tissue or organ of interest (Swat and Glazier
2013). The EPA models evaluate chemical exposures that alter growth and phenotypic characteristics of
the agents in the models, which in this case are the cells. The models can describe cell growth or pattern
formation of different structures in the virtual embryo or regional distribution of cell response in the vir-
tual liver.

As with any model, a critical consideration in developing response models is fidelity of biology be-
tween the modeled outcome (virtual-tissue responses) and the apical and other responses observed experi-
mentally. Assumptions and predictions of the models can be tested by using information from human celis
and co-cultures with different human cell types. Short-term targeted animal studies that use toxicogenomic
tools and other approaches can be used to evaluate the model more broadly. Virtual-tissue models have the
potential to help in conceptualizing and integrating current knowledge about the factors that affect key
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pathways and the degree to which pathways must be perturbed to activate early and intermediates responses
in human tissues and, when more fully developed, to support risk assessments based on studies of key
events and how the key events combine to cause adverse responses at the organism level.

ORGANISM-LEVEL AND POPULATION-LEVEL RESPONSE

The Tox21 report (NRC 2007) emphasized a future in which routine toxicity testing would rely on
in vitro assays with human cells or assays that probe molecular responses of human toxicity pathways and
pathway components. But, the report also noted that in some cases testing in whole animals might be nec-
essary, depending on the nature of the risk-assessment questions, although whole-animal studies were not
intended to provide routine information for assessing risks. The need for different types of information
related to the nature of the question posed was also emphasized in EPA’s report on next-generation risk
assessment (EPA 2014b; Krewski et al. 2014; Cote et al. 2016). That report considered three types of as-
sessments: screening and priority-setting assessments, limited-scope assessments, and in-depth assess-
ments. The last one would likely involve a wide array of toxicity-testing approaches, including whole-
animal studies. Approaches for assessing variability could also benefit from rodent panels that capture
population variability and panels of human cells derived from a group of diverse people. As is true of tox-
icity-testing tools at the molecular and cellular levels, there has been continuing development of new
methods for examining responses in whole animals that are likely to provide important information for
the limited-scope and especially for the in-depth assessments. The approaches for assessments on differ-
ent levels emphasize a fit-for-purpose orientation of designing the testing assays or batteries that depend
on the risk-assessment question. This section discusses novel animal models that provide opportunities
for enhancing the utility and power of whole-animal testing. It also describes recent advances in structure-
based computational models and read-across approaches that provide opportunities for predicting re-
sponse of data-poor chemicals at the organism level. Figure 3-6 highlights some organism-level and
population-level responses.

Novel Whole-Animal Models

Advances in genetics, genomics, and model-organism development have led to genetically well-
characterized whole-animal models, including transgenic rodent lines, isogenic mouse strains, and alter-
native species, such as zebrafish and Caenorhabditis elegans, which can be studied in a high-throughput
format. Those models coupled with toxicogenomics and novel imaging offer improvements over the tradi-
tional in-life rodent studies in that they offer new ways to explore chemical interactions at tissue and cel-
tular evels. Isogenic strains also offer new opportunities to identify determinants of human susceptibility,
especially when coupled with new interrogation tools, and to define new mechanisms of toxicity. Target-
ed testing, which is typically hypothesis-driven and more focused than historical testing strategies, can
help to develop and enhance the value of the new animal models, as well as traditional ones. It can be
used to explore the mechanisms by which a chemical causes toxicity, how outcomes might differ by age
and sex, and how susceptibility might vary in the population. It can help to address specific knowledge
gaps in risk assessment and can link in vitro observations to molecular, cellular, or physiological effects
in the whole animal. Targeted testing will be critically important in evaluating and validating the robust-
ness and reliability of new computational models, in vitro assays, and testing batteries (Andersen and
Krewski 2009; Krewski et al. 2009). As this section shows, the new animal models and outcome-
interrogation tools might provide broader assessment of hazards in whole organisms.

Transgenic Rodents

The development of transgenic mouse lines (such as knockin, knockout, conditional knockout, re-
porter, and humanized lines) advanced biomedical research; a few transgenic rat lines are also available
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now. Novel gene-editing technologies, such as CRISPR/Cas9, have the potential to generate inducible
gene editing in adult animals and the creation of transgenic lines in nontraditional mammalian models
(Dow et al. 2015). Gene editing permits the creation of experimental approaches that are more specifical-
ly suited for various tasks, including targeted testing of susceptible strains and exploration of gene—
environment interactions.

Although transgenic animals have been available for decades (Lovik 1997; Boverhof et al. 2011),
testing in transgenic animals and incorporation of data from transgenic models into risk assessment has
been limited, partly because of questions about applicability for risk assessment and concerns about the
cost to develop the models and evaluate a chemical in multiple strains. The National Toxicology Program
(NTP) continues to evaluate and develop such models. For example, NTP is using transgenic mice in the
testing of the artificial sweetener aspartame, which generally tested negative in standard assays but
showed a slight increase in brain tumors in a more sensitive transgenic-mouse strain. The transgenic pl6
model was used because it was thought to be susceptible to brain glial-cell tumors. NTP is also testing
aspartame in transgenic strains with knocked-out tumor-suppressor genes and activated oncogenes to im-
prove characterization of susceptibility and risk related to gene—environment interactions. Transgenic-
rodent mutation data have been used by EPA to understand carcinogenic mechanisms of several agents,
such as acrylamide (EPA 2010), but beyond those applications their incorporation into risk assessment
has been limited. They have been somewhat more widely used to test specific hypotheses about mecha-
nism, such as the mechanism of liver-cancer induction by phthalates (Guyton et al. 2009), and to evaluate
the depth of biological understanding to apply fully organotypic, computational systems-biology, physio-
logically based pharmacokinetic (PBPK), or other tools.

Genetically Diverse Rodents

Historically, toxicity testing has used only a few rodent species and strains. Although there are ad-
vantages in using a well-characterized strain of mice or rats to test chemical toxicity, there are many
shortcomings, including concerns about inadequately accounting for profound strain differences in chem-
ical sensitivity and metabolism (Kacew and Festing 1996; Pohjanvirta et al. 1999; De Vooght et al. 2010)
and inadequate genetic and phenotypic diversity. High rates of spontaneous disease in some strains (out-
bred and inbred) can sometimes complicate the interpretation of results. For example, the incidence of
background cardiomyopathy in the Sprague Dawley rat can be as high as 100% (Chanut et al. 2013),
some strains are completely resistant to some toxicants (Shirai et al. 1990; Pohjanvirta et al. 1999), and it
is unclear a priori whether the standard strain has sensitivity that is adequate or too high for identifying a
potential human hazard.

Assessment in multiple strains that have known genetic backgrounds is one approach to address var-
iable sensitivity among relatively homogeneous test strains and to address questions related to interindi-
vidual sensitivity to toxicants. Initiated in 2005, the Collaborative Cross (CC) is a large panel of novel
recombinant mouse strains created from an eight-way cross of founder strains that include three wild-
derived strains. The CC has a level of genetic variation akin to that of humans and captures nearly 90% of
the known variation in laboratory mice (Churchill et al. 2004). Outbred progeny that have completely re-
producible genomes can be produced through the generation of recombinant inbred intercrosses (RIX)
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(Zou et al. 2005). Because the CC strains and, by extension, the RIX lines have a population structure that
randomizes existing genetic variation, these models provide the increased power that is required to ex-
plore the genetic underpinnings of interindividual susceptibility. For example, the CC mouse replicated
human susceptibility, immunity, and outcome of West Nile virus infection more comprehensively than
the standard inbred model (C57BL/6J) (Graham et al. 2015).

There are several examples of the value of the CC in toxicological evaluation. Trichloroethylene
(TCE) metabolism, for example, varies considerably among people and among mouse strains, and the
metabolites differ in their mechanisms, toxicity, and organ-specific effects (NRC 2006). That variability
has been a critical barrier to understanding of the risk that TCE poses to humans. To address the challenge
in TCE-toxicity testing, a battery of mouse lines was used to assess interindividual variability in TCE me-
tabolism and toxicity in the liver and kidney (Bradford et al. 2011; Yoo et al. 2015a,b). Significant differ-
ences in toxicity and metabolism were observed in the different strains. Population PBPK modeling was
applied to the study results to illustrate how data on diverse mouse strains can provide insight into phar-
macokinetic variability in the human population (Chiu et al. 2013).

Multistrain approaches have also revealed fundamental mechanisms of hepatotoxicity of acetamino-
phen and biomarkers of this potentially fatal effect. Harrill et al. (2009) used a panel of 36 inbred mouse
strains and found that liver injury induced by acetaminophen was associated with polymorphisms in four
genes, but susceptibility to hepatotoxicity was associated with yet another, CD44. Follow-up study of two
healthy human cohorts showed that variation in the human CD44 gene conferred susceptibility to aceta-
minophen liver toxicity. This powerful example shows how a diverse animal population (in this case,
mice) can be used to characterize and identify potential susceptibility in humans.

The Diversity Outbred (DO) population is a heterogeneous stock seeded in 2009 from 144 inde-
pendent lineages from the CC breeding colony. Each DO mouse is unique and has a high level of allelic
heterozygosity (Churchill et al. 2012). Because they were derived from the same eight strains as the CC
mice, their genome can be reconstructed with a high degree of precision—a feature that facilitates ge-
nome-wide association studies and other similar approaches. A 2015 NTP proof-of-concept study that
used DO mice to capture variation in benzene susceptibility successfully identified two sulfotransferases
that modify and eliminate benzene metabolites that confer resistance to benzene toxicity (French et al.
2015).

One caveat in using genetically diverse rodent models is that their use potentially can increase ani-
mal use. The most effective use of such models in toxicology requires acceptance of novel computational
approaches, experimental designs, and statistical approaches that are specifically suited for the models
and capable of handling the unprecedented amount of data that these studies generate (Festing 2010). For
example, factorial designs can maximize genetic diversity and reduce the risk of false negatives without
necessarily requiring more animals than traditional rodent studies to address the central question. Addi-
tionally, using DO mice requires accepting that each individual is unique and that there is no way to in-
corporate “biological replicates” in the traditional sense. Researchers and risk assessors need to be aware
of and comfortable with the suite of data that results from these studies and to understand how to integrate
the data with information from other sources, including more traditional animal models (see Chapter 7).
Computational tools uniquely suited for these emerging animal models are available and readily adaptable
to toxicological testing (Zhang ¢t al. 2012b; Morgan and Welsh 2015). Tools for data analysis, visualiza-
tion, and dissemination are also available (Morgan and Welsh 2015). As with any model system, these
rodent models should be used only for questions that they are best suited to address. NTP and other
groups are developing frameworks and use cases to highlight when it is advantageous to use such models,
and the committee supports further discussion on this issue.

Other Whole-Animal Systems
Advances in genomics, imaging, and instrumentation have made some alternative species—such as

Caenorhabditis elegans (a nematode), Drosophila melanogaster (a fruit fly), and Danio rerio (the
zebrafish)—useful animal models for hazard identification and pathway discovery. Many technical ad-
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vantages are shared among the three dominant nonmammalian species, but zebrafish have several useful
characteristics not shared by the others. The genomes of zebrafish and humans display remarkable ho-
mology with an overall conservation of over 70%. Furthermore, 80% of the genes known to be involved
in human disease are expressed in zebrafish (Howe et al. 2013b). The signal-transduction mechanisms,
anatomy, and physiology of zebrafish are homologous to those of humans (Dooley and Zon 2000), and
zebrafish have all the classical sensory pathways, which are generally homologous to those of humans
(Moorman 2001; Colley et al. 2007).

Another important attribute that might make zebrafish particularly well suited for translational re-
search is the capacity to generate transgenic reporter lines that express fluorescent genes in specific cells,
tissues and organs. The large collection of transgenic fish lines are curated by the Zebrafish Model Organ-
ism Database and maintained by the Zebrafish International Information Network (Howe et al. 2013a).
There is also a rich diversity of zebrafish-disease models and drug screens to help to understand, prevent,
and develop therapies for human diseases, including various cancers (Feitsma and Cuppen 2008; Nguyen
et al. 2012; Gallardo et al. 2015; Gordon et al. 2015), diabetes and obesity (Gut et al. 2013; Dalgin and
Prince 2015; Schlegel and Gut 2015), psychiatric conditions (Panula et al. 2010; Norton 2013; Jones and
Norton 2015), heart disease (Arnaout et al. 2007; Chico et al. 2008; Arnaout ¢t al. 2014; Asnani and Pe-
terson 2014; Walcott and Peterson 2014), neurodegenerative syndromes (Bretaud et al. 2004; Chapman et
al. 2013; Mahmood et al. 2013; Da Costa et al. 2014; Martin-Jimenez et al. 2015; Preston and Macklin
2015), autism (Tropepe and Sive 2003), immunodeficiencies (Meeker and Trede 2008; Cui et al. 2011),
and blood disorders (Ablain and Zon 2013). Zebrafish have been used to investigate neurotoxicants (Lev-
in et al. 2007; Egan et al. 2009; Irons et al. 2010), and Box 3-1 provides an example of using zebrafish for
behavioral assessments.

BOX 3-1 Using Zebrafish to Assess Behavior

A limitation of current in vitro screening is the general paucity of assay coverage to identify neurotox-
ic chemicals reliably. Observations of zebrafish embryonic and larval pholomotor responses provide
robust measures of nervous-system deficits based on well-established methods. For example, 18-24
hours after fertilization (embryo stage), the photomotor response is measured as tail flexions before
and after a bright-light impulse. That assay has proved to be a highly sensitive chemical-toxicity screen-
ing tool (Kokel et al. 2010; Reif et al.2016). At 5 days after fertilization (larval stage), the photomotor
response can be assessed as a change in swimming activity in response to a sudden light—dark transi-
tion. Both tasks can be digitally measured in individual wells, so these complex behavioral assays are
highly amenable to high-throughput analysis (Padilla et al. 2012; Truong et al. 2014). The adult
zebrafish is increasingly used to measure neurobiological end points affected by chemical exposures.
An array of behavioral tests have been designed to probe different domains involved in sensorimotor
systems, cognition, and responses related to learning, memory, and anxiety. Indeed, zebrafish adults
and juveniles display a variety of complex behaviors, such as kin recognition (Mann et al. 2003; Ger-
lach et al. 2008), shoaling and schooling (Engeszer et al. 2007; Miller and Gerlai 2012), territoriality
(Spence and Smith 2005), associative learning (Al-Imari and Gerlai 2008; Fernandes et al. 2014), and
nonassociative responses, such as habituation (Best et al. 2008). A number of neurobehavioral tests of
anxiety and exploration have been modeled, and there is some evidence of conserved responses that
resemble those of rodent models (Panula et al. 2006; Egan et al. 2009; Champagne et al. 2010; Steen-
bergen et al. 2011). Startle tests have been developed to understand sensorimotor responses in
zebrafish exposed to environmental chemicals. Those assays have been used to test chemical effects
on zebrafish motor responses, including responses related to fluorinated organics (Chen et al. 2013),
vitamin E deficiencies (Lebold et al. 2013), nanoparticles (Truong et al. 2012), and pesticides (Sledge
et al. 2011; Crosby et al. 2015). Collectively, the sophisticated assays could be scaled to increase the

throughput with which chemicals are assessed for their effects on the nervous system.

Prepublication Copy 75

Oct. 2018 EPA-HQ-2018-000065 ED_001487_00006414-00095



Using 21st Century Science to Improve Risk-Related Evaluations

The Zebrafish Mutation Project hosted by the Sanger Institute is yet another major effort that will
facilitate cross-species studies. The project aims to develop a knockout allele in every protein-coding
gene in the zebrafish genome and characterize its morphological phenotype (Kettleborough et al. 2013).
Mining of zebrafish gene or phenotype databases should provide powerful opportunities to identify genes
involved in chemical-induced phenotypes.

An additional advantage of zebrafish is that the zebrafish genome is fully annotated, so tran-
scriptomic and all other -omics approaches are possible. Repression of gene expression by antisense mor-
pholinos, siRNA, and such gene-editing techniques as CRISPR/Cas9 is routinely used to assess gene
functions in the intact fish, and zebrafish embryos and larvae are nearly transparent, so noninvasive ob-
servation is possible. Because larvae measure less than a few millimeters, they can be accommodated in
multiwell plates, such as 384-well formats (Rennekamp and Peterson 2015). Only small quantities of test
chemicals are needed, so exposure—response relationships can be evaluated over a broad concentration
range and testing can be replicated to increase data confidence.

Although substantial research is going on with adult zebrafish for translational research (Phillips and
Westerfield 2014; Pickart and Klee 2014), early zebrafish life stages are particularly well suited for rapid
screening. During the first 5 days of life, nearly all gene products and signal-transduction pathways are
expressed (Pauli et al. 2012); thus, as in other vertebrates, development is a period of heightened sensi-
tivity to chemical exposure. Early—life-stage zebrafish also express a full battery of phase I and phase 11
metabolism systems, whose activities are highly similar to those of humans (Goldstone et al. 2010).

Despite the advantages of incorporating the use of early—life-stage zebrafish as part of a strategy for
making risk-based decisions, there are some noteworthy limitations. First, test chemicals typically are
added directly to the aqueous media, not unlike cells in culture. However, the routes of exposure over the
course of development, which can affect chemical uptake and metabolism, can be quite different. During
the first 2 days of embryonic development, the primary route of exposure is passive dermal adsorption.
Later in development, the gills and oral routes become available, and circulation plays a major role in
chemical distribution. For the varied routes of exposure, there is little understanding of tissue concentra-
tions, and this contributes to the challenges in comparing concentration—response results in zebrafish with
dose—response studies in other systems directly.

A related potential limitation is that despite metabolic similarities to other vertebrates, subtle differ-
ences in metabolic activity could lead to inaccurate toxicity predictions, particularly if metabolic activa-
tion or inactivation is mechanistically important for specific test chemicals. Because the developing em-
bryo constitutes a comprehensive integrated system, all potential molecular initiating events are
operational during testing. Thus, zebrafish are uniquely sensitive to chemical contaminants present in test
solutions in that a contaminant could act on biological targets and disrupt critical molecular events. Final-
ly, as with any animal model, the primary sequences of individual pathway components are not necessari-
ly highly conserved. For example, the zebrafish cyclin-dependent kinase 20 (cdc20) protein is 75% iden-
tical with the human protein at the amino acid level, and the zebrafish and human aryl hydrocarbon
receptors are only 40% identical. In both cases, the homologous proteins are functionally conserved.
Although variable conservation of the genomes is a source for potential discordance between zebrafish
and humans, the challenge is not unique to zebrafish inasmuch as individual allelic variations between
humans can also result in marked differences in chemical susceptibility.

Computational Structure-Based Models for Predicting Organism-Level Response

It has long been recognized that chemicals that have similar chemical structures can elicit the same
or similar toxicological effects and that, paradoxically, almost identical chemicals can cause dissimilar
biological responses. The extent to which similar chemicals or their metabolites interact with critical bio-
logical molecules, such as target proteins, and operate by similar mechanisms is a critical element in de-
termining structure—activity relationships. The last decade has seen advances in the development of struc-
ture-based computational methods to predict human health effects. Some are computational expert
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systems that consider structural alerts and underlying mechanisms, others are QSAR models that rely on
statistical correlations with molecular fragments, and still others are hybrids of these. Many advances
have been supported by large curated databases and increased computational power. Health effects ad-
dressed include carcinogenicity (Contrera et al. 2005; Valerio et al. 2007), hepatotoxicity (Greene et al.
2010; Hewitt et al. 2013), reproductive and developmental effects (Matthews et al. 2007; Wu et al. 2013),
and skin sensitization (Roberts et al. 2007a,b; Alves et al 2015).

The structure-based computational models that are probably the most advanced in model perfor-
mance and regulatory acceptance are QSAR models for genotoxicity or more specifically for mutagenici-
ty as measured in the Ames assay, a reverse-mutation bacterial assay that is commonly used to evaluate
the potential of chemicals to induce point mutations. The development of those models has benefited from
the quantity and structural diversity of data available in the public domain on chemicals that have been
tested in the Ames assay. As a result of performance, computational models are being accepted as surro-
gates for actual testing and have recently been incorporated into international guidelines for assessing mu-
tagenic impurities in pharmaceuticals to limit potential carcinogenic risk (ICH 2014). Computational ap-
proaches for other human health effects are being considered for use in a regulatory setting (Kruhlak et al.
2012), and the Organisation for Economic Co-operation and Development has published guidance that
outlines the needed components of a QSAR model in regulatory settings (OECD 2004). They include “a
defined end point; an unambiguous algorithm; a defined domain of applicability; appropriate measures of
goodness of fit, robustness, and predictivity; and, if possible, a mechanistic interpretation” (Gavaghan
2007).

The lack of wide use of QSAR models for end points other than mutagenicity might reflect predic-
tive performance that falls short of that required for practical applications. Most approaches predict only
whether a chemical will cause the adverse effect. The inability to predict a plasma concentration that
would be expected to elicit toxicity ultimately limits utility for differentiating between closely related
structures on which little or no safety information is available for comparison.

Read-Across Predictions

Read-across is a process that uses two-dimensional chemical-structure information to identify chem-
icals (analogues) that have been well studied toxicologically that are then used to predict the toxicity of a
similar chemical that has inadequate toxicological data or to group chemicals for the purpose of evaluat-
ing their toxicity collectively. Structural similarity can be determined by atom-by-atom matching that re-
sults, for example, in a chemical-similarity score or by identifying core molecular structures or functional
groups that are thought to be important in conferring toxicity potential. There should also be a considera-
tion of physicochemical similarity among analogues because significant differences in, for example, parti-
tion coefficients (such as logKow, a measure of lipophilicity) will have important effects on pharmacoki-
netic and often pharmacodynamic behavior of a chemical. Read-across approaches are receiving much
attention because they can help to satisfy the information requirements under European Union Registra-
tion, Evaluation, Authorisation and Restriction of Chemicals (REACH) regulations; the general concept
has been accepted by the European Chemicals Agency (ECHA) and member-state authorities (Patlewicz
et al. 2013). When robust toxicological data are available on one or more structurally related chemicals,
they can be used to infer the activity of a chemical that has not been adequately tested. ECHA (2015) has
recently published a framework by which it evaluates read-across submissions under REACH. ECHA’s
framework groups the read-across into six categories according to such factors as whether the read-across
is for a single analogue or an entire category, whether it is based on metabolism to a common product,
and the relative potencies of members of a chemical series.

Phthalate esters provide a well-studied example of the utility of read-across for male reproductive
toxicity. Phthalate esters that have chain lengths of four to six carbons (more if branched) cause testicular
toxicity (Foster et al. 1980) and adverse effects on male reproductive-system development (Gray et al.
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2000; NRC 2008) in rats. Studies of global gene expression in the fetal rat testis show comparable effects
of all the developmentally toxic phthalates (Liu et al. 2005) and support a conclusion that these chemicals
act via the same mechanism. Phthalate esters with shorter chains, such as dimethyl and diethyl phthalate,
do not produce similar effects on gene expression or on testicular function or male reproductive-system
development. Thus, well-studied phthalate esters in this group would serve as anchor chemicals for other
phthalates that have chains of four to six carbons in a read-across approach.

Read-across can be problematic, and caution is needed before its conclusions are relied on heavily.
For example, thalidomide has two stereoisomers, (S)-thalidomide and (R)-thalidomide, that are virtually
identical from a structural perspective in all aspects except for the 3-D orientation of the two ring systems
in relation to one another (see Figure 3-7). Their physical characteristics are also identical, so read-across
analysis might conclude that the chemicals will have similar or identical safety profiles. However, (5)-
thalidomide causes birth defects, embryo death or altered development, growth retardation, and functional
defects, whereas (R)-thalidomide does not. Still, the enantiomers are capable of interconverting in vivo, so
it is impossible to eliminate the teratogenic effects by administering only the (R)-enantiomer.

Despite the limitations, read-across remains a screening approach for assessing the safety of a mole-
cule in the absence of data on which to base an assessment. The 2015 ECHA framework provides guidance
on how protein binding, metabolism, and other data can be used in read-across analyses and potentially
overcome the limitations. Furthermore, a recent European study team proposed evaluation of read-across for
four basic chemical-group scenarios (Berggren et al. 2015): chemicals that do not undergo metabolism to
exert toxicity, that exert their toxicity through the same or structurally similar metabolites, that have low
toxicity, or that are structurally similar but have variable toxicity on the basis of their hypothesized mecha-
nism. They have selected chemical groups for case studies in each of the four categories.

Low et al. (2013) extended the concept of similarity in read-across from chemical structure to bioac-
tivity, specifically responses in a variety of in vitro and genomic assays. They proposed a hazard classifi-
cation and visualization method that draws on both chemical structure and biological features to establish
similarity among chemicals in read-across. The approach incorporates mechanistic data to increase the
confidence of read-across.

In addition to serving as a screening approach, read-across can be regarded as a hypothesis-
generating exercise. The hypotheses can be lumped into two broad categories: the new chemical is me-
tabolized to a chemical that has already been tested (or it and its analogue are metabolized to the same
chemical), or the new chemical and its analogues are sufficiently similar in chemical structure and proper-
ties that their biological activity is the same (that is, they have the same mechanism). In the former case,
there are long-standing methods for assessing chemical metabolism that can be applied to support or re-
fute the hypothesis that the new chemical is metabolized to something that has already been tested. In the
latter case, if the mechanism of the analogous chemicals is known, it is reasonably straightforward to test
for effects on the initial events of the mechanism (for example, receptor occupancy or enzyme inhibition).
In most cases, however, mechanisms are not known; in such cases, it is still possible to compare the re-
sponses of the chemical and its analogues in screening systems that globally assess toxicological respons-
es. Global gene-expression analysis is likely to provide universal coverage of possible mechanisms. Gene
expression in an animal model in which the target tissues (for the tested analogues) are known or in an in
vitro system that represents the target tissue is a reasonable way to test the hypothesis of a comparable
mechanism among analogues. It still might be possible to use gene expression in in vitro models to identi-
fy a mechanism when target tissue is not known, but it will probably require testing in more than one cell
type. Lamb et al. (2006) evaluated the gene-expression changes elicited in four cell types by a large num-
ber of drugs; they clearly showed the connections between agents that have the same pharmacological
action and demonstrated that this approach has high potential for toxicology. High-throughput screening
batteries, such as ToxCast, might also have utility for that purpose, but it will need to be determined
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(i) S-thalidomide (i) R-thalidomide

FIGURE 3-7 Molecular structures of (S)-thalidomide and (R)-thalidomide.

whether the current battery covers the universe of known toxicity mechanisms. Higher-order models, such
as organ-on-a-chip or zebrafish, might also be used for testing hypotheses of biological similarity if it can
be shown that these models have the biological machinery that is critical for the mechanism in question.
As data streams are added more systematically to the read-across process, integrated approaches, such as
Bayesian models, that provide for a more agnostic evaluation and promote consistency in output could be
developed. Figure 3-8 illustrates several scenarios for read-across and how it can be used to infer hazard
and dose—response relationships.

INCORPORATING DATA STREAMS

Various chemicals will have multiple data streams along the exposure-to-outcome continuum that
can be used to characterize hazard or risk. For example, pharmacokinetic studies might point to tissues
that have particularly high concentrations of a chemical that are potentially increased by active transport
as indicated in in vitro studies. Cell-free assays might suggest a set of key receptors, with cell-response
assays indicating response; the results, when considered in the context of high concentrations of a chemi-
cal in tissues, might indicate particular hazards, such as particular cancers or reproductive toxicity. Tar-
geted studies might show early markers of effect histopathologically, and gene expression in the studies
might show consistency with the findings of cell-based assays. The results might be supported by findings
on similar chemicals that predict the activity through structure—activity analyses. Robust assessments will
identify the more influential data streams with which to develop an integrated assessment. Some streams
will be more information-rich than others. The integration of multiple data streams is discussed further in
Chapter 7.

CHALLENGES AND RECOMMENDATIONS FOR ADVANCING TOXICOLOGY

This chapter shows how emerging scientific tools generate toxicological evidence on hazard and
dose—response relationships of chemicals and other risk issues. It emphasizes how the tools apply to dif-
ferent components in the exposure-to-outcome continuum. Some tools, such as PBPK and systems-
biology models, provide a basis for linking components along the continuum. Others, such as high-
throughput assays or targeted testing, provide a direct readout of chemical effect within a single compo-
nent or in multiple components. The tools vary in their maturity for application, their scope of applicabil-
ity among chemical classes, and the questions that they can address. The committee emphasizes that the
level of performance required for the various tools will depend on the question that is being addressed
(context) and on agency policies.

There are specific technical and research challenges. Some have been mentioned in preceding sec-
tions of this chapter; the challenges related to molecular and cell-based assays are particularly notable.
Some important challenges in advancing the tools for risk-assessment application are described below,
and some recommendations are offered.
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Read-Across Scenarios: Inferring Hazard and Dose-
Characteristics of Anchor | Response Relationships for Examples
and Data-Sparse (DS} Data-Sparse (DS) Chemicals
Chemicals | from Anchor Chemicals

FIGURE 3-8 Scenarios for conducting read-across.

Advancing the New Testing Paradigm

Challenge: Obtaining the vision described in the Tox21 report in which traditional whole-animal
testing is replaced with a broad toxicity-testing strategy that uses primarily in vitro assays, computational
methods, and targeted animal testing for assessing the biological activity of chemicals is a complex and
labor-intensive task that requires focus, commitment, and resources (NRC 2007). The strategy for achiev-
ing the vision involves research to understand the spectrum of perturbations that could result in human
toxicity and the nature and extent of the toxicity caused by the perturbations and research to understand
how determinants of human variability (for example, underlying nutritional, genetic, or disease state or
life stage) and exposure duration might affect biological responses or toxicity. The scientific community
needs to recognize that the current approach to toxicity testing and data analysis is often compartmental-
ized, and this prevents a holistic approach in trying to determine toxicity of chemical exposure.

Recommendation: Broad consideration of research that is needed to advance the development of a
suite of tests that essentially achieves the vision in the Tox21 report is beyond the present committee’s
charge, but the committee notes that the research described above in the challenge statement should have
high priority so that the vision can be achieved. The committee expresses its concurrence with the Tox21
committee and emphasizes that testing should not be limited to the goal of one-to-one replacement but
rather should extend toward development of the most salient and predictive assays for the end point or
disease being considered.

Optimizing Tools to Probe Biological Response

Challenge: Developing a comprehensive in vitro system that covers the important biological re-
sponses to chemical exposure that contribute to human adverse health effects is a considerable challenge.
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Most assays used in the ToxCast program were developed to meet the needs of the pharmaceutical indus-
try and were not designed to cover the full array of biological response, given the extensive testing in
whole animals and humans that is conducted for drug development. Thus, not all major forms of toxicity
are captured in the current assays, and correlating tested activities with toxicity-hazard traits has been lim-
ited. For example, few or no ToxCast or Tox21 assays test for several of the key characteristics of carcin-
ogenesis (Smith et al. 2016). There is also the question of how short-term assay exposures are related to
chronic exposure or developmental exposures in vivo. Responses that depend on higher levels of biologi-
cal complexity could be missed by cell-based assays. A number of issues for assay development acknowl-
edged in NRC (2007) remain, including coverage of the necessary biological space to ensure that human
sensitivity and susceptibility to toxicants are adequately captured.

Recommendation: Whole-animal testing should move beyond standard approaches, including those
associated with experimental design and statistical methods, to maximize their utility. An array of whole-
animal tools are now available, and their adoption could address knowledge gaps in risk assessment more
comprehensively and begin to address the breadth of genetic sensitivity in response to chemical exposure
and other contributors to human variability in response. Guidance for incorporating these whole-animal
tools into risk assessment would likely speed their adoption and use.

Recommendation: Use of targeted rodent tests that incorporate the use of -omics technologies, such
as sentinel-tissue transcriptomics, should be encouraged. The experimental design should include strate-
gies for data interpretation and analysis, such as Bayesian approaches, that are specifically developed for
these studies. Strategic whole-animal testing could help to identify the broader suite of pathways that are
beyond the scope of current molecular and cell-based tests, guide the development of in vitro assays that
could enhance confidence in extrapolating from in vitro tests to whole-animal responses, and provide a
stronger basis of hazard identification and dose—response assessment.

Recommendation: Tools for probing genomic, epigenetic, transcriptomic, proteomic, and metabo-
lomic changes in cells should be advanced because they provide an opportunity to assess cellular changes
in a nontargeted and non—pathway-specific manner. Because virtually all toxicity is accompanied by spe-
cific changes in gene expression (and presumably changes in protein expression and metabolic profile),
continued exploration of these in vivo and in vitro approaches as standalone screens or as complements to
in vitro screens might be a way to cover more biological space.’

Understanding and Addressing Limitations of Cell Systems

Challenge: Substantial progress has been made in developing and adapting a wide array of assays
for screening environmental chemicals, but cell cultures have several important limitations. There are
challenges in incorporating metabolic capacity into the assays to ensure that assay conditions generate
chemical exposures that are representative of the exposures in humans that could lead to toxicity. Cell
cultures also tend to be extremely sensitive to environmental conditions; changes in microenvironments
can alter cellular phenotypes and responses and result in skewed results of toxicity screens. Furthermore,
conventional monolayer cultures are less sensitive than 3-D cultures, and the response obtained from an in
vitro assay can depend on the cell type that is used—a liver cell vs a neuron or a primary cell vs an im-
mortalized cell. Current in vitro assays evaluate only chemicals that have particular properties; chemicals
typically must be soluble in dimethyl sulfoxide, have low volatility, meet molecular-weight cutoffs, and
be available in high enough quantity and purity.

°If in vitro methods are used for this purpose, it will be important to identify the minimum number of cell types
necessary for full coverage. Identifying the cell types will require a combination of statistical approaches that retro-
spectively analyze the available transcriptomic data and prospective experimentation to determine the number of cell
types that are responsive to a broad array of mechanisms. High-content imaging techniques that capture effects on
multiple cellular-toxicity indicators simultaneously—including mitochondrial integrity, cell viability, lipid accumu-
lation, cytoskeletal integrity, and formation of reactive oxygen species (Grimm et al. 2015)—can also be used for
nontargeted screening and offer the potential to integrate multiple aspects of cell function.
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Recommendation: Formalized approaches should be developed to characterize the metabolic compe-
tence of assays, to determine for which assays metabolic competence is not an essential consideration,
and to account for the toxicity of metabolites appropriately. Approaches could include the development
and application of better in silico methods for predicting metabolism and elimination and the development
of methods for including metabolic capability without compromising other aspects of assay performance.
Federal agencies have initiated some research to address the metabolic-capacity issue, and the committee
recommends that the research have high priority.

Recommendation: Research should be conducted to understand the breadth of cell types needed to
capture toxicity that might occur only with specific cell lines. It is possible to identify common pathways
of toxicity that exist in all cell types, but biology specific to cell types could be of great use in identifying
organ-specific toxicities.

Recommendation: Cell batches—even those from established cell lines—should be characterized
sufficiently before, during, and after experimentation. Genetic variability, phenotypic characteristics, and
purity should be reported in published literature or on publicly accessible Web sites or interfaces.

Recommendation: Assay development should be coordinated with development of computational
models of cellular responses involved in pathway perturbations to promote deeper understanding of
shapes of dose—response curves at the cellular level.

Addressing the Whole Human and the Human Population

Challenge: The exposure-to-outcome continuum in reality can be complex. Chemicals can perturb
multiple pathways and lead to various forms of toxicity. Furthermore, toxicity can be influenced by genet-
ics, diet, lifestyle choices, social factors, sex, life stage, health status, and past and present exposures. All
those factors can influence responses at different points in the exposure-to-outcome continuum and occur
in the exposure milieu and context of human experience.

Recommendation: Efforts to capture human variability better in in vitro and in vivo toxicity tests
should be explored. Broader testing of multiple cell lines from diverse human populations could find idio-
syncratic sensitivity of some populations, as has been seen in in vivo testing of panels of isogenic mouse
strains, although this approach addresses only variability due to genetic factors for a single upstream end
point. Approaches for better characterization of the variety of possible responses to chemicals in food,
drugs, or the environment are needed. Experimental approaches could be coupled with computational ap-
proaches for better characterization.

Recommendation: Relatively low-cost, rapid molecular and cellular assays should be used to inves-
tigate the toxicity of chemical mixtures. Furthermore, humans are not exposed to single chemicals in iso-
lation but instead are constantly exposed to myriad chemicals in their environment, endogenous chemicals
produced in the body or modulated as a consequence of social and behavioral factors, and complex chem-
ical mixtures. Cell-based assays can be used to explore at the molecular and pathway level how the addi-
tion of a chemical exposure to existing exogenous and endogenous exposures might contribute to risk.
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Advances in Epidemiology

Epidemiology is the study of health and disease in populations. Standard definitions of epidemiolo-
gy emphasize a descriptive component that captures patterns of disease by person, place, and time and an
ctiological component that identifies causes of disease (Gordis 2013). The descriptive element of epide-
miology comprises tracking of health and disease indicators and population risk factors (surveillance).
The etiological activities—searching for the causes and determinants of discase—involve primarily case—
control and cohort studies. The span of epidemiological research also includes intervention studies, both
randomized and nonrandomized in the assignment of preventive measures, such as vaccinations, or other
interventions.

This chapter addresses the evolving approaches used by epidemiologists to investigate the associa-
tions between environmental factors and human disease and the role of epidemiology in the context of the
committee’s charge regarding 21st century science related to risk-based decision-making. It does not give
an overall introduction to the science of epidemiology; such material is readily available in textbooks and
elsewhere. It briefly discusses, however, the role of epidemiology in risk assessment, the evolution of ep-
idemiology, data opportunities now available, and types of biases to consider given the use of Tox21 and
ES21 tools and methods. The chapter then focuses on the use of -omics technologies in epidemiology and
concludes with some challenges and recommendations.

RISK ASSESSMENT AND EPIDEMIOLOGY

The role of epidemiological evidence has long been established within the risk-assessment paradigm
originally described in the report Risk Assessment in the Federal Government:. Managing the Process
(NRC 1983) and in various later reports (Samet et al. 1998). Identification of risk factors for disease and
inference of causal associations from epidemiological studies provide important information for the haz-
ard-identification component. Evidence on hazard obtained from epidemiological studies is given prece-
dence in evidence-evaluation guidelines, including those of the US Environmental Protection Agency and
the International Agency for Research on Cancer (IARC). Convincing epidemiological evidence that in-
dicates a hazard is considered sufficient to establish causation, for example, in the IARC carcinogen clas-
sification scheme. However, human data are available on only a relatively small number of agents, partic-
ularly in comparison with the large number of environmental agents to which people are potentially
exposed. In the absence of natural experiments, observational epidemiological studies are the only scien-
tific approach available and ethically acceptable for studying possible effects of potentially harmful
agents directly in human populations.

In addition to providing evidence for hazard identification, epidemiological studies can provide un-
derstanding of the exposure—response relationship. For some agents, the effects of exposure have been
investigated primarily in particular groups of workers, such as asbestos workers, at exposure magnitudes
typically much higher than those of the general population, and exposure—response relationships are ex-
trapolated downward, introducing uncertainty. If the needed exposure data on a general population are
available, epidemiological studies can provide key information on risk at exposure concentrations rele-
vant to the population at large. For example, air-pollution exposures of participants in large cohort stud-
ies, including the American Cancer Society’s Cancer Prevention Study 2 and the multiple studies in-
volved in the European Study of Cohorts for Air Pollution Effects (ESCAPE 2014), have been estimated.
Although some exposure misclassification is inherent in the case of most environmental and occupational
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exposures, there are numerous examples of successful incorporation of epidemiologically based expo-
sure—response relationships into risk assessments: ionizing radiation and cancer, particulate-matter air
pollution and mortality, arsenic exposure and cancer, and childhood lead exposure and neuropsychologi-
cal development. Methods of addressing or correcting for measurement error have been developed; such
corrections generally lead to exposure-response curves with steeper slopes (Hart et al. 2015).

Epidemiological studies can also contribute to understanding the exposure—response relationship by
identifying determinants of susceptibility if information on characteristics of study participants (such as
their age, sex, and now genomes) is available. Data collected for epidemiological research or for popula-
tion surveillance can be useful for describing exposure distributions on the basis of questionnaires, moni-
toring, models, and analyses of biological specimens.

Epidemiological research might also provide information on overall population risk that fits into the
risk-characterization component of risk assessment. The population attributable risk statistic, originally
developed to estimate the burden of lung cancer caused by smoking, provides an estimate of the burden of
disease resulting from a causal factor (Levin 1953). Thus, data on human populations can contribute to all
four components of the risk-assessment paradigm described in Chapter 1.

EPIDEMIOLOGY IN THE 21st CENTURY
The Evolution of Epidemiology

The methods of epidemiological research have not been static. Initially, epidemiological research on
the etiology of noncommunicable diseases—primarily cancer, cardiovascular diseases, pulmonary diseas-
es, and metabolic diseases—focused on particular risk factors; exposure assessment was accomplished
largely by using self-report questionnaires, measurement and estimation methods in the case of occupa-
tional studies, and relatively crude indicators in the case of environmental exposures. Some studies incor-
porated measurements from biological samples, such as lead or cadmium concentrations, and some esti-
mated exposures with models that used extensive data. For example, in the study of survivors of the
Hiroshima and Nagasaki atomic bombings, radiation dose was estimated with an elaborate algorithm that
incorporated such information as location and body position at the time of the blast. Epidemiological
studies of noncommunicable discase, carried out beginning in the 1950s, focused on risk factors at the
individual level; some later studies began to incorporate risk determinants at higher levels of social or
organizational structure, including the family, the places of residence and work, and the state and country.
Efforts were made to build the studies around conceptual frameworks that reflected understanding of
structural, sociological, and cultural factors driving health status and disease risk, and recent decades have
seen increasing emphasis on life-course approaches that acknowledge the importance of early life expo-
sures, even in utero and transgenerational, for disease risk. Furthermore, many later studies of the envi-
ronment and health have been designed to reflect the variation in environmental exposures among and
within communities.

Most recently, epidemiological research has been greatly affected by advances in other fields. The
start of the 21st century was characterized by rapid advances in technology, medical sciences, biology,
and genetics pertinent to epidemiology (Hiatt et al. 2013). Enhanced computing and data-storage capacity
have been critical. The advent of genomics and genome-wide association studies (GWASS), for example,
has played an important role in promoting the transformation of the practice of epidemiology.

The need to achieve samples large enough to provide studies that have adequate statistical power
and the need to replicate novel findings in independent study populations facilitated the evolution of large
epidemiological research teams, multicenter studies and consortia, meta-analytical tool development, and
data-sharing etiquette. Recent decades have seen an evolution from single investigative teams that have
proprictary control of individual datasets and specimens to the establishment of research consortia that
have adopted a team-based science and a reproducibility culture through greater sharing of data, proto-
cols, and analytical approaches (Guttmacher et al. 2009; Tenopir et al. 2011). Indeed, some funding agen-
cies have sought to catalyze the transformation further by supporting the development and dissemination
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of validated state-of-the-science protocols designed to ascertain a broad array of phenotypic measures so
that individual research teams (when designing new studies) might be positioned better to share and har-
monize data among multiple studies (PhenX Toolkit NHGRI).

Case—control and cohort studies—the traditional workhorses of epidemiology—will continue to
make strong contributions. Case—control studies, in particular, will continue to contribute to timely in-
depth examination of people that have specific rare outcomes, such as rare cancers or reproductive out-
comes, including specific birth defects. Cohort studies will continue to play an important role in aiding in
the delineation of carly antecedents of disease and the identification of preclinical biomarkers and risk
factors and contribute to the foundation for translational research and precision medicine. Cohort studies,
if started early enough, can be informative on the importance of carly life exposures and their influence
throughout the life course. The committee anticipates an increasing number of cohort studies that inte-
grate treatment and health-outcome information from multiple sources, including information from
health-care delivery systems. Studies that incorporate analysis of samples from companion biobanks will
become key resources for connecting mechanisms identified in -omics and other assessments to patho-
genesis in humans. Availability of more extensive geographical location information would allow incor-
poration of new and emerging data streams that document physical and social environments of popula-
tions on small scales into existing and new studies.

In summary, the factors reshaping the field of epidemiology in the 21st century include expansion of
the interdisciplinary nature of the discipline; the increasing complexity of scientific inquiry that involves
multilevel analyses and consideration of disease etiology and progression throughout the life course;
emergence of new sources and technologies for data generation, such as new medical and environmental
data sources and -omics technologies; advances in exposure characterization; and increasing demands to
integrate new knowledge from basic, clinical, and population sciences (Lam et al. 2013). There is also a
movement to register past and present datasets so that on particular issues data can be identified and com-
bined. There are already models for data aggregation across studies (for example, National Cancer Insti-
tute Cohort Consortium and Agricultural Health cohorts), and researchers recognize the need for harmo-
nizing data collection to facilitate future dataset aggregation (PhenX Toolkit NHGRI; Fortier et al. 2010).
They are also considering how to create global biobanks (Harris et al. 2012).

New Data Opportunities

Epidemiology has always been a discipline that uses large quantities of information with the goal of
identifying risk factors that can be targeted in individuals or populations ultimately to reduce disease
morbidity and mortality. Today, modern technologies—including genomic, proteomic, metabolomic,
epigenomic, and transcriptomic platforms and sophisticated sensor and modeling techniques—facilitate
the generation and collection of new types of data. The data can be used to generate hypotheses, but they
can also be used to supplement data from legacy studies to strengthen their findings (see Box 4-1). New
data opportunities have arisen from changes in how medicine is practiced, how health care is delivered,
and how systems store and monitor health-care data (AACR 2015). Biobanks are being constructed by a
variety of institutions that provide clinical care and potentially constitute new data sources.! They typical-
ly include collections of biological specimens (blood, urine, and surgical and biopsy specimens), clinical
patient information that provides demographic and lifestyle information, perhaps a questionnaire on life-
style and environmental and occupational exposures, and ascertainment of health outcomes from clinical
records. Thus, human data and biosamples potentially available for application of various -omics and

'The committee notes that biobanks are not a new creation. For example, the National Health and Nutrition Ex-
amination Survey, which is conducted for surveillance purposes, collects and analyzes specimens, and the data gen-
erated have proved invaluable for exposure assessment. Many other population-based biobanks have been created,
usually by enrolling healthy subjects; the largest ones include the European Prospective Investigation into Cancer
and Nutrition (IARC 2016) and the UK Biobank (2016).
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BOX 4-1 Using Legacy Studies

“Legacy’” studies have accumulated substantial information on various environmental exposures,
such as tobacco use, occupational exposures, and air pollution; personal factors, including genetic
data; and disease events that have occurred over decades of follow-up. Some include biological-
specimen banks and measures of disease phenotype and intermediate outcomes that were obtained
by imaging, physiological testing, and other assessment methods. Some studies have already been
used for application of -omics technologies (EXPoSOMICS 2016). Various cohorts have been used to
address the association of ambient air pollution with disease incidence and mortality by adding esti-
mates of air pollution at residence locations that were generated by new exposure models that have
sufficient spatial resolution. Combining data from multiple studies provides an opportunity to gain sta-
tistical power and make results more precise while increasing the variety of exposures and the hetero-
geneity of study participants.

other technologies might come from opportunistic studies that rely on data sources that might have been
collected and stored for nonresearch purposes. However, evidence from studies that use human tissue and
medical data gained through convenience sampling from special populations might not be readily general-
ized. Furthermore, such studies carry the same potential for bias as other nonexperimental research data,
but there is no opportunity with these studies to address some biases via a well-thought out study design,
data collection, and protocols for obtaining biospecimens. Thus, new data streams and technologies,
although promising, raise important methodological concerns and challenges and are driving the need to
develop new study designs and analytical methods to account for technology-specific peculiarities
(Khoury et al. 2013). Investigators have cautioned about the increasing possibility of false leads and dead
ends with each new assay and have called for careful evaluation of analytical performance, reproducibil-
ity, concept validity, and ethical and legal implications (Alsheikh-Ali et al. 2011; Khoury et al. 2013).

The tsunami of data spanning the spectrum of genomic, molecular, clinical, epidemiological, envi-
ronmental, and digital information is already a reality of 21st century epidemiology (Khoury et al. 2013).
There are challenges in using current methods to process, analyze, and interpret the data systematically
and efficiently or to find relevant signals in potential oceans of noise. To address those issues, the US
government in 2012 announced the “Big Data” Initiative and committed funds to support research in data
science in multiple agencies (Mervis 2012). Epidemiologists are poised to play a central role in shaping
the directions and investment in building infrastructures for the storage and robust analysis of massive
and complex datasets. Given experience with multidisciplinary teams, epidemiologists are also equipped
to direct the interpretation of the data in collaboration with experts in clinical and basic health sciences,
biomedical informatics, computational biology, mathematics and biostatistics, and exposure sciences. Ad-
aptation of technological advances, such as cloud computing, and strategic formation of new academic—
industry partnerships to facilitate the integration of state-of-the-art computing into biomedical research
and health care (Pechette 2012) are only some of the initial challenges that must be confronted before new
data opportunities can be properly and effectively integrated into future epidemiological studies.

Types of Biases and Challenges Related to External Validity

As noted, contemporary epidemiology is faced with an unprecedented proliferation of clinical and
health-care administrative data, -omics data, and social and environmental data. The biases that generally
affect epidemiological evidence can be grouped into three broad categories: information bias that arises
from error in measurements of exposure or outcome variables and co-variates, selection bias that arises
from the ways in which participants are chosen to take part in epidemiological studies, and confounding
that arises from the mingled effects of exposures of interest and other exposures. External validity refers
to the generalizability of findings and is a key consideration in risk assessment. Understanding the selec-
tion processes, measurement accuracy, and interpretation of analyses is critical for using epidemiological
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data in risk assessment, including the new and perhaps large cohorts that will be created from health-care
databases and combined with exposure estimates.

The multiplicity, diversity, and size of data sources have generated widespread enthusiasm in re-
searchers about the new possibilities (Roger et al. 2015a,b). There will, however, be some challenges in
using the data. For example, reliance on electronic medical records as a sole basis for assembling cohorts
might accentuate sample-selection biases because of health-care—seeking behaviors of patients; promote
misclassification or incomplete documentation of phenotypes, clinical diagnoses, and procedures because
of vagaries in clinical coding incentives and practices; and lead to confounding because key factors need-
ed to evaluate confounding are not routinely collected in medical records, particularly those associated
with environmental exposures. Although electronic record systems might support the generation of large
cohorts for investigations, having a large sample size does not mitigate the potential for biases, and it in-
creases the likelihood of statistically significant false-positive findings. Furthermore, electronic medical
records typically contain little information on occupational and environmental exposures, linkage to ex-
posure databases might be problematic, and information on important potential confounders, such as to-
bacco use, might be sparse and not collected in the standardized fashion needed for research.

In evaluating risks posed by environmental agents, epidemiologists and exposure scientists typically
work together to enhance exposure estimates used in epidemiological studies by broadening the variety of
exposures considered, increasing precision of exposure measures, and providing insights into errors that
inevitably affect exposure estimates. The full array of advances in exposure science that are described in
the ES21 report (NRC 2012) and in Chapter 2 of the present report have application in epidemiological
studies. When exposure methods are appropriately incorporated into the study design, they facilitate ex-
ploration of measurement error in exposure variables and covariates. Such error has long been considered
a serious limitation of epidemiological evidence in risk-assessment contexts; nonrandom errors can bias
apparent effects upward or downward, and random error generally obscures associations and dose—
response relationships. Measurement-error corrections can be made by using data from validation studies
and statistical models that have been developed over the last 2 decades and applied, for example, to stud-
ies on diet and disease risk, radiation and cancer, and air pollution and health (Li et al. 2006; Freedman et
al. 2015; Hart et al. 2015).

EPIDEMIOLOGY AND -OMICS DATA

Historically, epidemiological research has incorporated emerging technologies into new and current
studies. The need to incorporate new science, however, accelerated several decades ago with the introduc-
tion of the paradigm of molecular epidemiology. The new paradigm emerged as a replacement of “black
box” epidemiology, an approach that examined associations of risk factors with disease while not ad-
dressing the intervening mechanisms. The molecular-epidemiology paradigm opens the black boxes
through the incorporation of biomarkers of exposure, susceptibility, and disease. It stresses the importance
of pathways and their perturbation, which is highly relevant to the opportunities provided by 21st century
science and specifically -omics technologies. The approach also strengthens the evidence base for one of
Bradford Hill’s guidelines for causality: understanding of biological plausibility (see Chapter 7). For ex-
ample, carcinogenesis is thought to be a multifactorial process in which mutations and selective microen-
vironments play critical roles, and key steps of the process can be explored with biomarkers. The molecu-
lar-epidemiology paradigm is a general one and conceptually accommodates emerging methods for
generating biomarker data.

As indicated, molecular-epidemiology research is focused on underlying biology (exposure and dis-
case pathogenesis) rather than on empirical observation. Thus, as -omics technologies have emerged, they
have been integrated into current studies and have affected study design, particularly specimen collection
and management. The incorporation of -omics approaches dates back about 2 decades, beginning with the
genomic revolution. In some of the current cohort studies, blood samples that had been appropriately
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stored were analyzed for single-nucleotide polymorphisms (SNPs) and other markers to search for genes
associated with disease risk, including those modifying risk associated with environmental agents.

The utility of bringing -omics technologies into epidemiological research is already clear as exem-
plified by many studies that have incorporated genomics. One well-known starting point for exploring the
genetic basis of disease has been GWAS (see discussion below), which involves the comparison of ge-
nomic markers in people who have and people who do not have a disease or condition of interest. The list
of -omics approaches applied in epidemiological research has now expanded beyond genomics to include
epigenomics, proteomics, transcriptomics, and metabolomics (see Box 1-1). Table 4-1 lists advantages
and disadvantages of their use. Examples of their use in a specific context are provided in Appendix B,
which describes the meaning and limitations of -omic approaches in the context of epidemiological re-
search on air pollution. Although the new methods have the potential to bring new insights from epidemi-
ological research, there are many challenges in applying them. Some new studies are being designed with
the intent of prospectively storing samples that can be used for existing and future -omics technologies,
for example, in the case of the EU-funded projects Helix and EXPOsOMICS described in Chapter 1. Ob-
taining data from human population studies that are parallel to data that can be obtained from in vitro and
in vivo toxicity assessments is already possible and offers the possibility of harmonizing comparisons of
exposure and dose.

In principle, the -omics approaches now support nontargeted explorations of genes with genomics,
mRNA with transcriptomics, proteins with proteomics, and metabolites with metabolomics. With the ex-
ception of genomics, the measurements usually reflect changes within cells at one or a few points in time
only, and the tissues that are used in humans are primarily surrogates, such as blood, urine, and saliva.
Combining different -omics tools, however, increases the possibility for a better understanding of how
different external exposures interact with internal molecules, for example, by inducing mutations (ge-
nomics), causing epigenetic changes (epigenomics), or modifying the internal cell environment in more
complex ways. The latter changes might be monitored with proteomics, transcriptomics, or metabolomics.

Meet-in-the-Middle Approach

One informative strategy for the integration of -omics technologies into epidemiological research is
the meet-in-the-middle approach (Vineis et al. 2013). The approach provides insights into biological plau-
sibility that can bolster causal inference. In the context of a population study, the approach generally in-
volves a prospective search for intermediate biomarkers that are linked to the underlying disease and are
increased in those who eventually develop disease, and a retrospective search that links the intermediate
biomarkers to past exposures of the environmental agent of concern. As illustrated in Figure 4-1, the ap-
proach can be considered as three steps: an investigation into the association between exposure and dis-
case, an assessment of the relationship between exposure and biomarkers of exposure and early effects,
and an assessment of the relationship between the disease outcome and intermediate biomarkers. Infer-
ence of a causal relationship between exposure and disease is strengthened if associations are documented
for each of the three key relationships in Figure 4-1, corresponding to A, B, and C.

A recent study of epigenetics and lung cancer (Fasanelli et al. 2015) is illustrative. The biomarkers
are methylation status of the AHRR gene and the F2RL gene, which are hypomethylated in smokers (ex-
posure in Figure 4-1B) (Guida et al. 2015; Vineis et al. 2013). Hypomethylation of the genes is also asso-
ciated with lung cancer (discase in Figure 4-1C). The question is, Are those biomarkers on the causal
pathway for lung cancer caused by smoking? Fasanelli et al. (2015) showed by using the statistical tech-
nique of mediation analysis that 37% of lung cancers could be explained by the methylation status of the
two genes. Thus, the two genes are biomarkers that are likely to be on the causal pathway and illustrate
the “meeting in the middle” of the exposure and the disease, the middle being the biomarker. The com-
mittee notes, however, that fully assessing causality requires additional steps beyond statistical analysis.
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TABLE 4-1 Advantages and Limitations of -Omics Technologies

Advantages Use in large, hypothesis-free investigations of the whole complement of relevant biological
molecules

Better understanding of phenotype—genotype relations

Might provide insights into the effects of interactions between environmental conditions and
genotypes and mechanistic insights into disease aetiology

Limitations There are limitations arising from cost of assays, quality of biological material available (such as
instability of RNAs), and the amount of labor needed.

Techniques that are still in their discovery state and new leads need to be carefully investigated
and compared with existing biological information from in vivo and in vitro tests.

New leads in the discovery of novel intermediate markers need to be confirmed in other
independent studies preferably with different platforms.

Moving from promising techniques to successful application of biomarkers in occupational and
environmental medicine requires not only standardizing and validating techniques, but also
appropriate study designs and sophisticated statistical analyses for interpreting study results
especially for untargeted approaches (the issue of multiple comparisons and false positives).

Source: Adapted from Vineis et al. (2009).

A | Exposure | Disease

Biomarkers Biomarkers

B Exposure of Exposure | of Effect

| Biomarkers Biomarkers
C | of Exposure of Effect

Disease

FIGURE 4-1 The meet-in-the-middle approach centers on investigating (A) the association between exposure and
disease, (B) the relationship between exposure and biomarkers of exposure or effect, and (C) the relationship be-
tween disease and biomarkers of exposure or effect.

Exposome-Wide Association Studies

As defined in Chapter 1, exposome refers to the totality of exposures from conception to death.
Some have questioned whether the exposome as defined defies practical measurement and is therefore not
amenable to scientific methods (Miller and Jones 2014). In an attempt to define the exposome as a meas-
urable entity, Rappaport and Smith (2010) proposed to consider first the body’s internal chemical envi-
ronment and how the body responds to these chemical exposures.” They referred to the exposures as the

*The inclusion of biological response in the concept helps to expand beyond external chemical exposures to many
types of exposures—including psychological or physical stress, infections, and gut flora—that produce endogenous
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internal exposome and distinguished it from the external exposome—exposures external to the body—and
suggested that the internal and external exposomes are complementary. For example, internal assessment
might identify environmental health associations (that is, generate new hypotheses on disease ctiology),
but external exposure assessments are needed to identify sources, consider exposure routes, and address
spatial and temporal variability of exposures (Turner et al. in press). Consequently, an external-exposome
assessment can take place after hypotheses have been generated, and the environmental sources of inter-
nal changes can be sought. The two study designs—one that looks for internal changes starting from ex-
ternal measurements (external-exposome assessment) and one that looks for external sources on the basis
of internal signals (internal-exposome assessment)—are complementary and have been defined as “bot-
tom-up” and “top-down” approaches, respectively.

The -omics tools that can be used to capture the internal exposome make nontargeted analyses that
parallel GWASSs in concept and approach possible. Studies of that design have been referred to as expo-
some-wide association studies (EWASs).” Specifically, the EWAS approach involves the investigation of
associations of a large number of small molecules, proteins, or lipids with disease or intermediate pheno-
types to identify biomarkers of exposure or disease. One general EWAS approach to generate new hy-
potheses on disease causation has been described by Rappaport and Smith (2010). Figure 4-2 shows a
study design that can lead to the generation of new hypotheses about chemical hazards in the context of a
case—control study. Targeted and nontargeted metabolomics approaches are used to compare exposures of
cases that have a specific disease with exposures of ones that do not (controls). After the initial discovery
phase, the experimental design can be improved by a testing (replication) phase with a prospective con-
text (a case—control study that is nested in a prospective cohort). That approach takes temporality into ac-
count by using biological samples collected before disease manifestation to avoid or to reduce the poten-
tial for reverse causation. Unidentified features that are significantly associated with the outcomes of
interest would next be chemically identified by using methods described in Chapter 2, for example, by
using NMR, IMS-MS/MS, or cheminformatics or by synthesizing and evaluating chemical standards for
candidate chemicals. In the next step, validation of the association and a final causal assessment would be
attempted through replication in more than one cohort, and biological plausibility would be evaluated.

Biological plausibility could be evaluated with a targeted analysis of available human tissues by us-
ing proteomics, metabolomics, or other methods to search for biological responses related to the disease.
Alternatively, novel animal models or high-throughput in vitro assays described in Chapter 3 could be
used to test candidate chemicals and generate biological-response data that could be compared with re-
sponses related to the EWAS-identified association with disease. Evaluation of biological plausibility
would ideally also include refinement of exposure, if necessary, and a systematic comparison of human
exposures to exposures in test systems that are used to produce the supporting biological-response data. If
similar toxicity data and models are used, responses to exposures in cohort members could be directly
compared with those in test systems; the comparison would provide additional evidence on the likelihood
of biological plausibility, which would be greater if responses to exposure were similar, and smaller if
they were not. An example of the approach described was used to investigate colon cancer. The research
began with three cross-sectional case—control studies and found an association between an unidentified
metabolomic feature (analyte) and colon cancer (Ritchie et al. 2013). The association was later confirmed
prospectively in the European Prospective Investigation into Cancer and Nutrition cohort, and the meta-
bolic feature was identified as belonging to a group of ultra—long-chain fatty acids (Perttula et al. 2016).

The EWAS approach offers exciting opportunities, but there are challenges that need to be ad-
dressed. The challenges in using tools that produce “big data” are similar to those encountered in all

chemicals, such as oxidative molecules, and disease-producing responses, such as inflammation, oxidative stress,
and lipid peroxidation.

The committee notes that the acronym EWAS was originally proposed by Patel et al. (2010) to refer to environ-
ment-wide association studies, but others, such as Rappaport (2012), have used EWAS to refer more specifically to
exposome-wide association studies, as used here by the committee.
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FIGURE 4-2 A study design for developing new hypotheses on causation of disease by exposure. The committee
notes that the approach and tools used to investigate exposures and biological pathways for “causality and preven-
tion” are not necessarily different from those used to investigate biological pathways relevant for drug development.
Source: Rappaport 2012,

multiexposure studies. The study design and analysis have to be chosen carefully and assessed in terms of
all classic biases to establish causality, that is, using principles that apply to targeted designs that focus on
a single exposure and outcome. The EWAS approach adds the challenge of determining which exposures
among many correlated ones have a causal role and which reflect a biological perturbation caused by oth-
er agents. The temporal dynamics of the exposures need to be addressed with the stability of media con-
centrations. An additional premise of the EWAS approach is that useful, biologically informative bi-
omarkers can be identified, that is, that the chemicals in question are not too short-lived and exposure not
too sporadic to be capured by only one or a few biospecimens obtained in a cross-sectional survey or co-
hort study.

The committee notes that use of retrospective case—control design for EWAS makes it impossible to
be certain if associations observed reflect a causal relationship between exposures and the outcome inves-
tigated or if the associations are a consequence of the disease or its treatment. As summarized by Thomas
et al. (2012), the technique of Mendelian randomization (Dawvey Smith et al. 2004) is one way to address
reverse causation and uncontrolled confounding; a gene is used as an instrumental variable (Greenland
2000) to evaluate the causal effect of a biomarker on disease risk. In an approach that paraliels the meet-
in-the-middle approach, a novel two-step extension of this idea has been proposed for methylation studies
that uses two genes as instrumental variables: one estimates the exposure—methylation association, and
the other the methylation—disease association (Cortessis et al. 2012; Relton and Davey Smith 2012).
There is an inherent assumption in that approach that the instrumental variable is indeed an appropriate
instrument for exposure.

New Analytical Challenges
There are formidable challenges in integrating the -omics technologies and data into epidemiologi-
cal research, and robust high-dimensional analytical techniques will be required to integrate and analyze

all the data. For example, statistical analyses that consider many exposure variables simultaneously with-
out strong priors, such as in EWASs, greatly increase the risk of observing random associations (false
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positives) because of multiple testing. Therefore, statistical tools for the analysis of multiple exposures
have motivated investigators to draw on important lessons learned from the analysis of GWAS data (Shi
and Weinberg 2011; Thomas et al. 2012); some are described below. In general, statistical techniques for
high-dimensional data—such as those noted and others, including machine learning, dimension reduction,
and variable-selection techniques—must be adapted to the longitudinal-data-accrual context to account
for such issues as time-varying exposure and delayed effects (Buck Louis and Sundaram 2012).

Multistep analytical approaches have been used to estimate health risks associated with different
types or combinations of exposures. For example, estimates from EWAS analytical approaches with no a
priori information might be quantified by using classical regression models while controlling for false
discovery rate, as is done in GWASs (Patel et al. 2010, 2013; Vrijheid et al. 2014). Furthermore, flexible
and smoothing modeling techniques (Slama and Werwatz 2005) might be used to identify and character-
ize possible thresholds or exposure—response relationships.

Pathway analytical approaches are increasingly used for integrating and interpreting high-
dimensional data generated by multiple -omics techniques; these approaches have enabled analyses of
relationships between multiple exposures and multiple health outcomes. It is noteworthy that pathway
analytical approaches have been used to identify molecular signatures associated with environmental
agents through exploratory analyses of metabolites, proteins, transcripts, and DNA methylation in biolog-
ical samples (Jennen et al. 2011; Vrijheid et al. 2014). As summarized by Vrijheid et al. (2014), once bi-
omarkers have been identified, available libraries of biological pathways—such as Gene Ontology (Ash-
burner et al. 2000), Kyoto Encyclopedia of Genes and Genomes (Kanchisa and Goto 2000), Reactome
(Fabregat et al. 2016), and Comparative Toxicogenomics Database (Davis et al. 2015)—can be searched
and used to identify relevant biological pathways affected by exposures whether alone or in combination.
Furthermore, biological pathways can be grouped and described using available software, such as Ingenu-
ity Pathway Analysis (Krdamer et al. 2014), Cytoscape (Saito ¢t al. 2012), and Impala (Kamburov et al.
2011). For example, those analytical approaches have been applied to several types of -omics data from
systems that respond to 2,3,7,8-tetrachlorodibenzo-p-dioxin and to a broader set of environmental and
pharmacological agents (Jennen et al 2011; Kamburov et al. 2011).

Other methods are also available to address the new analytical challenges. First, analysis of covari-
ance techniques has been used to integrate individual exposures (obtained, for example, from personal
wearable devices) and outdoor exposures (obtained, for example, from environmental monitoring) by ex-
ploring the variance components of key exposures arising from multiple sources before creating exposure
groups or clusters. Second, factor analysis and latent class analysis have proved useful for creating re-
duced sets of exposure indexes on the basis of commonly occurring exposures while allowing people who
share similar exposure profiles to be grouped. Third, to address the high-dimensional nature of epigenetic
data, cluster-analysis techniques developed by Siegmund et al. (2006) can be applied to exposome-wide
association-genomic studies; these techniques treat the cluster rather than individual epigenetic marks as a
latent risk factor for disease (Cortessis et al. 2012). Fourth, structural equation modeling approaches
might be used to define combined exposure variables on the basis of knowledge summarized by directed
acyclic graphs (Budtz-Jergensen et al. 2010).

Bayesian profile regression models might be used to identify groups of people who have a similar
exposome but show marked differences in the health-outcome variable of interest (Molitor et al. 2010;
Papathomas et al. 2011; Vrijheid et al. 2014). Model-based clustering would be applied to the exposure
data while allowing the outcome of interest to influence cluster membership. The Bayesian model-based
clustering technique has been used, for example, to identify a cluster in a high-risk set for lung cancer—a
group who has the characteristics of living near a main road, having high exposure to PMy, (particulate
matter with aerodynamic diameter <10 pum) and to nitrogen dioxide, and carrying out manual work (Pa-
pathomas et al. 2011; Vrijheid et al. 2014).

The general need for caution in contending with the potential for false-positive associations that
arise from analysis of large datasets is generally recognized among those handling such data. In addition
to analytical approaches, such as correcting p values for multiplicity and using such parameters as the
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false-discovery rate, the committee notes that epidemiological findings are interpreted holistically in the
context of other relevant evidence. In the context of risk assessment, hazard identification would rarely, if
ever, be based on an association found in a single epidemiological study, absent additional evidence.

CHALLENGES AND RECOMMENDATIONS FOR ADVANCING EPIDEMIOLOGY

With the emergence of Tox21 and ES21 approaches, the committee anticipates new connections be-
tween biomarkers and human health outcomes. Epidemiological studies have an implicit role in providing
the population counterpart that is needed to interpret biomarkers measured in laboratory studies through
the general paradigm of molecular epidemiology and the meet-in-the-middle approach. For that purpose,
epidemiologists need to generate human data (1) to harmonize doses used in in vitro high-throughput as-
says with those associated with the exposures experienced in the population setting, (2) to explore the rel-
evance of pathways identified in assay systems to human responses to the same agents and validate the
predictive value of pathways detected in vitro assays for the occurrence of human disease, (3) to develop
and validate models of human susceptibility, and (4) to compare and corroborate exposure—response rela-
tionships obtained from in vitro assays and in human populations.

The overall goal of gaining new insights by connecting -omics data generated in laboratory with da-
ta gathered in population contexts will not be achieved without consideration of the needed research in-
frastructure and the logistical barriers to bringing together datasets from disparate sources. The committee
concludes by highlighting some challenges that face epidemiological research and recommendations for
addressing them. The committee notes that several recommendations below call for developing or ex-
panding databases. In all cases, data curation and quality evaluation should be routine in database devel-
opment and maintenance.

Developing the Infrastructure and Methods Needed to Advance the Science

Challenge: When used in epidemiological studies, particularly ones with large biobank cohorts that
might reach a million or more participants, -omics assays can generate large databases that need to be
managed and curated in ways that will facilitate access and analysis. There is an additional challenge of
analyzing extremely large datasets by using a hypothesis-driven or exploratory approach.

Recommendation: Resources should be devoted to accelerating development of database manage-
ment systems that will accommodate extremely large datasets, support analyses for multiple purposes,
and foster data-sharing and development of powerful and robust statistical techniques for analyzing asso-
ciations of health outcomes with -omics data and exploring such complex problems as gene—environment
interactions. Such efforts are already under way in a number of fields, such as clinical research that in-
volves health-care data, and should be extended to epidemiological research.

Challenge: Standard methods are needed to describe the data that have been generated and that are
shared among disciplines. The problem has been recognized in genomics and has led to the development
of annotated gene ontologies, and similar approaches could be extended to other types of -omics data.

Recommendation: Ontologies should be developed and expanded so that data can be harmonized
among investigative groups, internationally, and among -omic platforms. Such ontologies generally do
not incorporate data collected by epidemiologists. Such tools as STROBE should be expanded and
adapted to the new generation of epidemiological studies; STROBE has already been expanded to en-
compass molecular epidemiology (Gallo et al. 2011). The Framework Programme 7 EU Initiative—
coordination of standards in metabolomics (COSMOS)—is developing “a robust data infrastructure and
exchange standards for metabolomics data and other metadata” (Salek et al. 2015); this type of approach
should be extended to other -omics data.
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Data-Sharing

Challenge: Data-sharing involves many complexities, particularly when the data are from human
studies. However, data-sharing could be particularly beneficial if data could be accessed in a way that
would support uniform analyses and integration through hierarchical analyses or meta-analysis. Data-
sharing could also lead to more powerful assessments of hazard and of exposure—response relationships.
One useful example is the pooling of data from studies of radon-exposed underground miners that sup-
ported the development of risk models for indoor radon (Lubin et al. 1995).

The same issues surrounding data-sharing arise in other domains in which big-data approaches are
emerging, and a general culture of data-sharing will be needed. Regarding genomics, posting of sequenc-
ing data has become the norm but with attention to anonymity. Similar sharing will ideally extend to other
-omics data and lead to the development of a culture of data-sharing, pragmatic solutions to the inherent
cthical problems, and standardized ontologies and databases. The committee notes that discussion around
data-sharing is moving rapidly with regard to clinical trials; similar efforts around observational data are
needed (Mascalzoni 2015).

Recommendation: Steps should be taken to ensure sharing of observational data relevant to risk as-
sessment so that, for example, biomarkers can be validated among populations. As noted above, to
achieve that goal, standard ontologies should be developed and used for capturing and coding key varia-
bles. There is also a need for systematic exploration of possible logistical and ethical barriers to sharing
potentially massive datasets drawn from human populations.

Collaborating and Training the Next Generation of Scientists

Challenge: New research models based on biobanks and large cohorts derived from clinical popula-
tions will become a valuable resource for applying -omics and other biomarker assays, but there are intrinsic
limitations related to biases and the scope of data available in electronic records. There are also complicated
issues related to access to private and confidential medical records and to sharing of such data.

Recommendation: As biobanks and patient-based cohorts are developed, those developing them
should engage with epidemiologists and exposure scientists on the collection of exposure data to ensure
that the best and most comprehensive data possible are collected in this context. Finding ways to capture
exposure information will be particularly challenging and will likely require ancillary data collection in
nested studies.

Challenge: A wide array of biospecimens is being collected and stored on the assumption that they
will be useful in the future for a variety of purposes, including assays that cannot be anticipated. Storage
methods and consent procedures need to support future use.

Recommendation: Epidemiologists should anticipate future uses of biospecimens that are collected
in the course of epidemiological research or other venues, such as screening or surveillance, and ensure
that the array of specimens and their handling and storage will support multiple assays in the future. Such
future-looking collections should be a design consideration, and input should be obtained from scientists
who are developing new assays.

Challenge: A new generation of researchers who can conduct large-scale population studies and in-
tegrate -omics and other emerging technologies into population studies is needed. The next generation
also needs sufficient multidisciplinary training to be able to interact with exposure and data scientists.

Recommendation: The training of epidemiologists should be enriched with the addition of more in-
depth understanding of the biological mechanisms underlying human diseases and of the biomarker as-
says used to probe them.
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Challenge: The landscape of epidemiological research is changing quickly with a move away from the
fixed legacy cohorts of the past, such as the Nurses” Health Study, to pragmatically developed cohorts that
are grounded in new and feasible ways of cohort identification and follow-up. There are also likely to be
large national cohorts, such as the cohort already under development for the Precision Medicine Initiative.
Those cohorts are intended as platforms for a wide array of research questions; they are designed as large
banks of biospecimens but will have inherent limitations regarding the exposure information available.

Recommendation: Epidemiologists, exposure scientists, and laboratory scientists should collaborate
closely to ensure that the full potential of 21st century science is extended to and incorporated into epi-
demiological research. Multidisciplinarity should be emphasized and sought with increasing intensity. As
the new cohorts are developed, the opportunity to ensure that they will be informative on the risks posed
by environmental exposures should not be lost.
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A New Direction for Risk Assessment and
Applications of 21st Century Science

The scientific and technological advances described in Chapters 2—4 offer opportunities to improve
the assessment or characterization of risk for the purpose of environmental and public-health decision-
making. To facilitate appreciation of the new opportunities, this chapter first discusses the new direction
envisioned for risk assessment and then highlights applications (see Box 1-3) of 21st century science that
can be used to improve decision-making. It provides concrete examples of pragmatic approaches for us-
ing 21st century science along with long-standing toxicological and epidemiological approaches to im-
prove the evidence used in decision-making. The chapter next addresses communication of the new ap-
proaches to stakeholders. It concludes with a brief discussion of the challenges that they pose and
recommendations for addressing the challenges.

A NEW DIRECTION FOR RISK ASSESSMENT

The seminal 1983 National Research Council (NRC) report Risk Assessment in the Federal Gov-
ernment: Managing the Process (NRC 1983) defined risk assessment as “the use of the factual base to
define the health effects of exposure of individuals or populations to hazardous materials and situations.”
The report noted that risk assessment had four components—hazard identification, exposure assessment,
dose—response assessment, and risk characterization—and that risk assessments contain some or all of
them. It stated that various data streams from, for example, toxicological, clinical, epidemiological, and
environmental research need to be integrated to provide a qualitative or quantitative description of risk to
inform risk-based decisions. It recognized explicitly the uncertainty that arises when information on a par-
ticular substance is missing or ambiguous or when there are gaps in current scientific theory, and it called
for inferential bridges or inferential guidelines to bridge such gaps to allow the assessment process to con-
tinue. Risk assessment then (as now) relied heavily on the measurement of apical responses, such as tu-
mor incidence and developmental delays, in homogeneous animal models, often with little exposure or
epidemiological information.

Although today’s risk assessments generally support the same types of decisions as those in 1983,
the tools available for asking and answering relevant risk-based questions have evolved substantially. As
outlined in Chapters 2-4 of the present report, modern tools in exposure assessment, toxicology, and epi-
demiology have increased the speed at which information can be collected and the scope of the data
available for risk assessment. The focus has also shifted from observing apical responses to understanding
biological processes or pathways that lead to the apical responses or to disease. The tools are designed to
investigate or measure molecular changes that give insight into the biological pathways. Thus, a “factual
base” is being created that is increasingly upstream of the adverse health effects that federal agencies seck
to prevent or minimize.

The Tox21 report (NRC 2007) fixed the new direction for risk assessment with its focus on discern-
ing toxicity pathways, which were defined as “cellular response pathways that, when sufficiently per-
turbed in an intact animal, are expected to result in adverse health effects.” Since publication of that re-
port, the understanding of biological processes underlying disease has increased dramatically and has
provided an opportunity to understand the biological basis of how different environmental stressors can
affect the same pathway, each potentially contributing to the risk of a particular disease. To operationalize
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a risk-assessment approach that relies on mechanistic understanding, it will be necessary to understand
the critical steps in the pathways, but beginning to apply the approach does not require knowing all path-
ways. For example, the results of a subchronic rat study might indicate a failure of animals to thrive,
which is manifested as decreased weight gain and some deaths over the course of the study, but no obvi-
ous target-organ effects. Studies on the molecular effect of the chemical indicate that it is an uncoupler of
oxidative phosphorylation. Epidemiological studies could then focus on biological processes that are en-
ergy-intensive, such as heart muscle under stress. Exposure science could be used to measure or estimate
population exposure to the stressor over space and time and could align toxicity data with environmental
exposures for use in epidemiological studies. Assays to screen for the perturbation along with chemical-
structure considerations might help to characterize risks posed by similarly acting chemicals, and expo-
sure estimates could be generated for other chemicals hypothesized to exert a similar response.

Today, there is an appreciation of the multifactorial nature of disease, that is, a recognition that a
single adverse outcome might result from multiple mechanisms that can have multiple components. (See
further discussion in Chapter 7.) Thus, the question shifts from whether A causes B to whether A increas-
es the risk of B. Figure 5-1 provides an illustration of that concept, and Box 5-1 provides a concrete ex-
ample. In the figure, four mechanisms (M;—M,) and various combinations of six components (C,—Cs) are
involved in producing two outcomes (O; and O,). For example, three components (C;, C;, and C;) are
involved in activating mechanism M;, which leads to outcome O, and C; is a component in several
mechanisms. Here, a component is defined as a biological factor, event, or condition that when present
with other components produces a disease or other adverse outcome; mechanism is considered to be com-
prised of one or more components that cause disease or other adverse outcomes when they co-occur; and
pathways are considered to be components of mechanisms. The model can incorporate societal factors
that drive exposure or susceptibility, such as poverty, and that might ultimately lead to cellular responses
that activate various mechanisms. For example, in mechanism My, societal factors could perturb compo-
nent C;, the same one that the chemical under consideration perturbs. Alternatively, societal factors could
perturb components C, and C; of mechanism M, which in combination with the chemical’s direct pertur-
bation of component C; could fully activate the mechanism. The ability to identify the contribution of
various components of a given mechanism and to understand the significance of changes in single com-
ponents of a mechanism is critical for risk-based decision-making based on 21st century science.

In the challenging context of multifactorial diseases, the 21st century tools allow implementation of
the new direction for risk assessment that acknowledges the complexity of the determinants of risk. They
can enable the identification of multiple disease contributors and advance understanding of how identified
mechanisms, pathways, and components contribute to disease. They can be used to probe specific chemi-
cals for their potential to perturb pathways or activate mechanisms and thereby increase risk. And the new
tools provide critical biological information on how a chemical might add to a disease process and how
individuals might differ in response; thus, they can provide insight on the shape of the population dose-
response curve and on individual susceptibility to move toward the risk characterizations envisioned in
report Science and Decisions: Advancing Risk Assessment (NRC 2009). As noted by NRC (2007,
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\
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FIGURE 5-1 Multifactorial nature of disease illustrated with four mechanisms (M) that have various components
(C) and lead to two outcomes (O).

Prepublication Copy 111

Oct. 2018 EPA-HQ-2018-000065 ED_001487_00006414-00131



Using 21st Century Science to Improve Risk-Related Evaluations

2009), people differ in predisposing factors and co-exposures, so the extent to which any particular chem-
ical perturbs a pathway and contributes to disease varies in the population. A challenge for the dose—
response assessment is to characterize the extent to which the whole population and sensitive groups
might be affected or, at a minimum, whether the perturbation exceeds some de minimis level.

BOX 5-1 Example of Multifactorial Nature of Disease

Sonic hedgehog (shh) is a signaling protein that is synthesized in mammalian embryos by the noto-
chord and floor plate of the neural tube. Its function is to establish the ventral midline for the developing
central nervous system. Interference with shh signaling during early embryonic development leads to
the birth defect holoprosencephaly, in which the cerebrum fails to develop into two hemispheres. A
number of events (‘components” in Figure 5-1) can interfere with shh functioning. They include point
mutations in the shh gene that lead to a partial loss of funtion (Roessler et al. 1997); mutations in the
7-dehydrocholesterol reductase gene that prevent the post-translational modification of shh in which
cholesterol is added to the protein (a step that is essential for signaling—the mutation can lead to a
condition described as the Smith-Lemli-Opitz syndrome) (Battaile and Steiner 2000); cholesterol syn-
thesis-inhibiting drugs, such as BM15,766, that act on the same enzyme (Kolf-Clauw et al. 1997); and
some plant alkaloids, such as cyclopamine, that inhibit the post-translational modification of shh (Incar-
dona et al. 1998). Any component at a high enough dose or rate is sufficient to cause holoprosenceph-
aly, but there are probably cases in which the dose or rate of one or more of the components is insuffi-
cient to disrupt shh signaling, but added together can perturb function.

In this example, all the components are acting on the same target, shh, but in different ways: some
affect the integrity of the protein (point mutations in the gene), some affect its post-translational modifi-
cation, and some affectits ability to interact with its receptor. Regardless, the result is the same: signal-
ing by shh secreted by the notochord or ventral neural tube that is insufficient to establish a ventral
field. The disruption of shh signaling is the ‘mechanismy” in Figure 5-1.

Shh is expressed elsewhere in the embryo where it has a role in limb development and tooth devel-
opment. Limb abnormalities; such as extra digits or fused digits, are often observed in the Smith-Lemli-
Opitz syndrome. In Figure 5-1, that syndrome would represent a second outcome of the same mecha-
nism. As indicated in Figure 5-1, different mechanisms can produce the same outcome. For example,
retinoic acid is also an important morphogenetic factor in limb development, and retinoic acid excess or
deficiency can produce limb defects. That would represent a separate mechanism that would involve
other components (for example, nutritional vitamin A deficiency and inhibition of the enzyme that con-
verts retinol to retinoic acid) but lead to the same adverse outcome (digit defects). The figure below il-
lustrates this example in terms of Figure 5-1. Abbreviations: CSI, cholesterol synthesis-inhibiting;
DHCRY, 7-dehydrocholesterol reductase; R, retinol; RA, retinoic acid; shh, sonic hedgehog.
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Although the discussion above focuses primarily on the toxicological and epidemiological aspects of
the new direction, exposure science will play a critical role. The exposure data arising from the technolog-
ical advances in exposure science will provide much needed and increasingly rich information. For exam-
ple, comprehensive exposure assessments that use targeted and nontargeted analyses of environmental
and biomonitoring samples or that use computational exposure methods will help to identify chemical
mixtures to which people are exposed. Such comprehensive assessments will support evaluating risks of
groups of similarly acting chemicals for single end points or investigating chemical exposures that might
activate multiple mechanisms that contribute to a specific disecase. Advancing our understanding of the
pharmacokinetics will further the ability to translate exposure-response relationships observed in in vitro
systems to humans, characterize susceptible populations, and ultimately reduce uncertainty in risk as-
sessment. Personalized exposure assessment will provide critical information on individual variability in
exposure to complement pharmacodynamic variability assessed in pathway-based biological test systems.
Ultimately, these and other advances in exposure science in combination with advances in toxicology and
epidemiology will provide an even stronger foundation for the new direction for risk assessment.

APPLICATIONS

Full implementation of the new direction for risk assessment or the visions described in the NRC re-
port Science and Decisions and the Tox21 and ES21 reports (NRC 2007, 2009, 2012) is not yet possible,
but the data being generated today can be used to improve decision-making in several areas. As noted in
Chapter 1 (Box 1-3), priority-setting, chemical assessment, site-specific assessments, and assessments of
new chemistries are risk-related tasks that can all benefit from incorporating 21st century science. The
methods and data required to support the various tasks will probably differ, and confidence in them will
depend to some extent on the context. For example, scientists have a great deal of experience in using
laboratory data to support biological plausibility in epidemiology studies, and the new data can be rela-
tively easily applied in that context. In contrast, methods used to support definitive chemical assessments
will likely need extensive evaluation, and risk assessors will need to be trained in how to use them. In the
following sections, the committee describes approaches that can use the new scientific approaches in spe-
cific applications.

Priority-Setting

Tens of thousands of chemicals are used in commerce in the United States (Muir and Howard 2006;
Egeghy et al. 2012) in various items—including building materials, consumer products, and craft sup-
plies—and can cause exposure through product use and environmental releases associated with manufac-
ture and disposal. Although the number of chemicals in the environment is large, the number of chemicals
for which toxicity, exposure, and epidemiology datasets are complete remains small. Given the finite re-
sources of government agencies and other stakeholders for investigating the risks associated with the wide
array of chemicals present in people, places, and goods, mechanisms for setting priorities for chemical
evaluation and determining appropriate risk-management strategies—reduction of use, replacement, or
removal—are essential.

Some categories of chemicals that are intended to have biological activity, such as drugs and pesti-
cides, are routinely subjected to a suite of toxicity tests as required by law. However, extensive toxicity
testing of most chemicals is not required, and the need for testing is determined by priority-setting
schemes. For example, the National Toxicology Program (NTP 2016) sets testing priorities on the basis of
the extent of human exposure, suspicion of toxicity, or the need for information to fill data gaps in an as-
sessment, and the European Union’s Registration, Evaluation, and Authorization of Chemicals (REACH)
testing requirements are based predominantly on production volume (chemical quantity produced per an-
num) and the potential for widespread exposure or human use, such as would occur with a consumer
product (NRC 2006; Rudén and Hansson 2010). Considerations of potential toxicity have generally been
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limited to alerts based on the presence of specific chemical features, such as a reactive epoxide moiety, or
similarity to known potent toxicants. Using only those considerations to set priorities is clearly limited;
additional hazard information that covers more biological space and exposure information that provides
more detailed estimates of exposure from multiple sources and routes would improve the priority-setting
process.

As Tox21 tools—such as high-throughput screening, toxicogenomics,' and cheminformatics—have
become available, priority-setting has been seen as a principal initial application. High-throughput plat-
forms, such as the US Environmental Protection Agency (EPA) ToxCast program described in Chapter 1,
have produced data on thousands of chemicals. Toxicogenomic analyses have the potential to increase the
biological coverage of in vitro cell-based assays and might be a useful source of data for priority-setting.
For example, efforts are under way to assess transcriptomic responses in a suite of human cells by using
positive control chemicals ultimately to determine whether biological pathways can be identified on the
basis of select patterns of gene expression (Lamb et al. 2006) or whole-genome transcriptomics (de
Abrew et al. 2016). Mismatches between in vitro and in vivo results might occur for several reasons, such
as a lack of metabolism in the in vitro assays. As discussed in Chapter 3, lack of or low-level metabolic
activation of an agent is widely recognized as a potential problem in in vitro studies, and development of
methods to introduce metabolic systems into assays that can be run in high-throughput format is under
active research.

Cheminformatic approaches can also be used to set priorities for chemical testing by evaluating se-
ries of chemicals for the presence of chemical features that are associated with toxicity—for example,
through the use of such proprietary tools as DEREK’—or by using decision trees that evaluate whether
there are precedents in the literature for specific chemical features to be associated with a particular tox-
icity outcome, such as developmental toxicity (Wu et al. 2013). Those methods have been automated and
allow for rapid identification of chemicals that have specific chemical features that have been identified
as potentially problematic, such as reactive functional groups, or that have a reasonably high similarity to
chemicals that are potent toxicants, such as steroid-like substances (Wu et al. 2013).

Several new high-throughput methods—for example, ExpoCast (Wambaugh et al. 2013) or ExpoDat
(Shin et al. 2015)—have been developed to provide quantitative exposure estimates for exposure-based
and risk-based priority-setting. The new technologies can estimate exposures more explicitly than older
simpler models by taking into account chemical properties, chemical production amounts, chemical use
and human behavior (likelihood of exposure), potential exposure routes, and possible chemical intake
rates. Information produced via high-throughput exposure calculations could be used to refine priority-
setting schemes.

Depending on the context, hazard and exposure information could be used in various ways for prior-
ity-setting. For example, screening based only on hazard could be particularly useful in situations, such as
those involving changes in product composition, in which exposure information is unknown or evolving
and there is an assumption that the product would be used in the same way with roughly the same expo-
sure. Methods have been proposed for risk-based priority-settting that use a combination of high-
throughput exposure and hazard information in which the highest estimated exposure and the lowest-
measured-effect concentration are identified, and margins of exposure (differences between toxicity and
exposure metrics) are calculated (Figure 5-2). Refinement of the margins of exposure by using reverse
pharmacokinetic techniques to estimate exposure has also been proposed (Wetmore et al. 2013). Confi-
dence in the approach should increase with broader biological coverage of the in vitro assays, innovations
that add metabolic activation to the assays, methods that take into account toxicity that is associated with
a particular route of exposure (such as inhalation), and improved accuracy of computational exposure
models to predict human and ecosystem exposures.

'Toxicogenomics is transcriptomic analysis of responses to chemical exposure.
*See hitp://www.lhasalimited.org/.
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FIGURE 5-2 Screening assessments could be used to estimate toxicity or predict exposure to rank chemicals for
further testing or assessment. Chemicals that have the smallest margins of exposure (that is, upper bounds of expo-
sure that are closest to or overlap with effect concentrations of toxicity) would be given the highest priority for fur-
ther evaluation.

Chemical Assessment

Chemical assessments encompass a broad array of analyses, from Integrated Risk Information Sys-
tem assessments that include hazard and dose—response assessments to ones that also incorporate expo-
sure assessments to produce risk characterizations. Moreover, chemical assessments performed by the
federal agencies cover chemicals on which there are few data to use in decision-making (data-poor chem-
icals) and chemicals on which there is a substantial database for decision-making (data-rich chemicals).
The following sections address how 21st century data could be used in the contrasting situations.

Assessments of Data-Poor Chemicals

Assessments of some data-poor chemicals might begin by evaluating outcomes whose mechanisms
are known. That is, mechanisms of a few toxicity outcomes, such as genotoxicity and skin sensitization,
are sufficiently well known for it to be possible to rely on mchanistically based in vitro assays—for ex-
ample, the Ames assay and direct peptide reactivity assay—for which the Organisation for Economic Co-
operation and Development guidelines already exist as the starting point for hazard assessment. For such
well-defined outcomes for which in vitro assays are sufficient for characterization, the process of hazard
assessment is relatively straightforward. Rather than using animal data as the starting point for establish-
ing hazard, one replaces the animal data with data from the alternative method. In most cases, conclusions
are qualitative and binary—for example, the chemical is or is not a genotoxicant. However, efforts are
under way to provide quantitative ways of using in vitro test information to describe the dose—response
characteristics of chemicals and ultimately to calculate a health reference value, such as a reference dose
or a reference concentration (Figure 5-3). In the approach that uses animal data and in the approach that
relies on in vitro results, uncertainty factors (UFs) are typically included to address interindividual differ-
ences in human response and the uncertainty associated with extrapolating from a test system to people.
Alternatively, a model can be used to extrapolate to low doses. Box 5-2 provides further discussion on
uncertainty, variability, UFs, and extrapolation.
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FIGURE 5-3 A comparison of the animal-based approach to derive reference values compared with an approach
under development that uses in vitro batteries where a biological pathway for a specific outcome has been elucidat-
ed. The UFs (or models) for the approaches would differ but are used to make adjustments on the basis of uncertain-
ty or variability or to extrapolate across doses. Abbreviations: PD, pharmacodynamics; PK, pharmacokinetics; POD,
point of departure; UFs, uncertainty factors.

BOX 5-2 Uncertainty and Variability in Assessment

Risk assessment involves the estimation of risk associated with a particular exposure and charac-
terization of the inherent uncertainties associated with the estimate. For human risk estimates based
on animal data, the uncerainties include ones associated with possible species differences (between
laboratory animals and humans) in pharmacokinetics and sensitivity, human population variability, and
prediction of lifetime exposures from less-than-lifetime testing protocols, and others. Although the
magnitude of each uncertainty can be approached experimentally (given enough resources and time),
they have typically been addressed in noncancer assessment by assigning uncertainty factors (UFs)
that have a specific value (usually 1, 3, or 10) to derive a toxicity or risk estimate. Using 21st century
science will require new thinking about the uncertainties associated with risk assessment and their
magnitude. Some aspects of uncertainty will be eliminated; for example, using human-derived cells
and receptors will eliminate the need to account for interspecies differences in pharmacodynamic sen-
sitivity. However, using an in vitro approach introduces new uncertainties, such as how an in vitro con-
centration is related to an exposure scenario in an intact human or how an upstream molecular-level
response is related quantitatively to a downstream disease outcome. Quantitative methods of combin-
ing information from multiple assays or data streams into integrated testing strategies (see, for exam-
ple, Jaworska et al. 2013; Rovida et al. 2015) have been used to represent the key steps of diseases
to overcome the uncertainty associated with using molecular-level responses.

It might also be possible to use biologically based dose-response modeling or other empirical mod-
eling to replace a UF-based approach for extrapolation; this would agree with the NRC (2009) recom-
mendation that dose—response modeling be based on a “formal, systematic assessment of back-
ground disease processes, possible vulnerable populations; and modes of action.” A modeling
approach has been used to determine a dose—response relationship for a toxicity pathway that in-
volves DNA damage and repair (Bhattacharya et al. 2011) that could be developed further to address
human heterogeneity in response. Another approach to estimating interindividual variability is large-
scale in vitro profiling of multiple human cell lines (Abdo et al. 2015a,b; Eduati et al. 2015), but this
addresses only variability due to genetic differences, which are expected to be a minor contributor in
many. cases. The range of human population variability in exposure and response is poorly under-
stood, but new technologies should improve our ability to quantify some uncertainties, including hu-
man heterogeneity in vulnerability to exposures. Characterizing the new uncertainties and estimating

their magnitude will be important as the new approaches are integrated into risk assessment.
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Most toxicity outcomes involve multiple pathways by which chemicals can exert an adverse influ-
ence, and not all pathways have been determined for many outcomes, such as organ toxicity and devel-
opmental toxicity. For those outcomes, simple replacement of animal-derived information with in vitro
information might not be possible. Another possible approach to evaluating chemicals is to use toxicity
data on previously well-tested chemicals that are structurally similar to the chemical of interest (Figure 5-
4). Analogues are selected on the basis of similarities in chemical structure, physical chemistry, and bio-
logical activity in in vitro assays. Comparisons of analogues with the chemical of interest are based on the
premise that the chemical of interest and its analogues are metabolized to common or biologically similar
metabolites or that they are sufficiently similar in structure to have the same or similar biological activity
(for example, they activate receptors similarly). The similarity supports the inference that the chemical
will induce the same type of hazard as the analogues although not necessarily at similar doses.

The method described in Figure 5-4 depends on having a comprehensive database of toxicity data
that is searchable by curated and annotated chemical structure (such as ACToR or DSSTox) and a con-
sistent decision process for selecting suitable analogues. Wu et al. (2010) published a set of rules for iden-
tifying analogues and categorizing them as suitable, suitable with interpretation, suitable with precondi-
tion (such as metabolism), or unsuitable for analogue-based assessment. The rules consider physical
chemistry, potential chemical reactivity, and potential metabolism of the chemical.

In many cases, a close similarity based on atom-by-atom matching is sufficient to classify two or
more chemicals as suitable analogues for each other. However, atom-by-atom matching is not sufficient
in every case. Small differences can sometimes alter the chemical activity in such a way that one metabol-
ic pathway is favored over another or the chemical reactivity with various biological molecules changes.
In practice, analogue-based assessment can be greatly facilitated by expert-rule—based considerations with
molecular similarity. The approach was tested in a case study that used a blinded approach and found to
be robust (Blackburn et al. 2011). Given that the total dataset for traditional animal toxicity data is large
(millions of entries in ACToR and probably tens of thousands of entries for each toxicity outcome), the
analogue-based approach could have great utility. Similar approaches are being developed and used for
read-across assessment of chemicals submitted under the European REACH regulation.
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FIGURE 5-4 Approach to deriving health reference values when data on structurally similar chemicals are available.
Similarity can be based on such characteristics as chemical structure, physicochemical properties, metabolism, key
events in biological pathways, or gene expression; similarity of several characteristics increases confidence in the anal-
ogy. The point of departure (POD) of the appropriate analogue would be adjusted on the basis of pharmacokinetic dif-
ferences between the chemical of interest and the analogue and other important biological factors, such as receptor ac-
tivation; relevant uncertainty factors would then be applied or models would be used. Accounting for uncertainty could
include a determination of the degree of confidence in the read-across, including the number of analogues identified,
the degree of similarity of the analogues to the chemical of interest, and the extent of the dataset on the analogues.
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A structure—activity assessment can be thought of as a testable hypothesis that can be addressed with
a variety of methods, such as those described in Chapter 3. Comparable metabolism can be assessed by
using established methods for testing xenobiotic metabolism in vivo and in vitro with the recognition that
metabolism can be complex for even simple molecules, such as benzene (McHale et al. 2012). Testing for
similar biological activity can be based on what is understood about the primary pathways by which the
chemicals in the class exert toxicity. If the mechanisms are not known, it is possible to survey some (for
example, using ToxCast assays) or all (for example, by using global gene-expression analysis) of the uni-
verse of possible pathways that are affected by the chemical to determine the extent to which the biologi-
cal activities of the chemical of interest and its analogues are comparable. Toxicogenomic analyses have
been found to be useful for identifying a mechanism in both in vivo and in vitro models (see, for example,
Daston and Naciff 2010). With lower-cost methods now available, large datasets of gene-expression re-
sponses for small molecules have become available (for example, the National Institutes of Health’s Li-
brary of Network-based Cellular Signatures, LINCS), and these data can support determination of the ex-
tent to which chemicals of similar structure are sufficiently comparable for read-across (Liu et al. 2015).

Combining cheminformatic and rapid laboratory-based approaches makes it possible to arrive at a
surrogate point of departure for risk assessment that uses analogue data. The surrogate can then be adjust-
ed for pharmacokinetic differences and bioactivity (Figure 5-5). The committee explored that approach in
a case study on alkylphenols (see Box 5-3 and Appendix B).
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FIGURE 5-5 Approach for deriving acceptable values when an appropriate analogue cannot be identified solely
through comparisons of structure and physicochemical data. In such a case, data from high-throughput in vitro as-
says of the chemical of interest can be used as an additional source of information to identify the best analogue that
can then be used to derive acceptable values.

BOX 5-3 Case Study: Alkylphenols

This case study illustrates the use of read-across for derivation of a health reference value. As de-
tailed in Appendix B, a data-poor alkylphenol (p-dodecylphenol) is compared with two data-rich al-
kylphenols (p-octylphenol and p-nonylphenol). Comparisons are made on the basis of two-dimensional
chemical structure and physicochemical properties. High-throughput in vitro data from ToxCast are
used to add confidence fo the selection of the analogues. Data from in vivo rat multigeneration studies
of the data-rich alkylphenols are used as a starting point for derivation of a health reference value and
adjustments are suggested on the basis of the ToxCast data. Limitations of the analysis are discussed,

and information that would add confidence to the results of the analysis is identified.
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Eventually, it might be possible to conduct similar assessments of chemicals without adequate ana-
logue data. Cheminformatic and laboratory methods could be used to generate hypotheses about the pos-
sible activities of a new chemical, and the hypotheses could be tested virtually in systems-biology models
and verified in higher-order in vitro models. As discussed in Chapter 3, computational models, such as the
cell-agent-based model used in the EPA virtual-embryo project, have done a reasonable job of predicting
the effects of potent antiangiogenic agents on blood vessel development by using high-throughput screen-
ing data and information on key genes in the angiogenic pathway as starting points for model develop-
ment (Kleinstreuer et al. 2013). The model can be run thousands of times—the virtual equivalent of thou-
sands of experiments—and adjusted on the basis of the simulation results. The outcome of the model was
evaluated in in vitro vascular-outgrowth assays and in zebrafish (Tal et al. 2014) and was found to be a
good predictor of outcome in the assays. Such an approach clearly depends on a deep understanding of
the biology underlying a particular process and how it can be perturbed and on sophisticated laboratory
models that will support evaluation of the virtual model. This approach will require some knowledge of
the key events that connect the initial interaction of an exogenous chemical with its molecular target and
the ultimate adverse outcome.

Regardless of whether the risk assessment is conducted with the read-across approaches depicted in
Figures 5-4 and 5-5 or the pathway approach just described, there will be circumstances in which the un-
certainty in the assessment needs to be reduced to support decision-making. That situation can arise be-
cause the margin of exposure is too small, the possible mechanisms have still not been adequately de-
fined, or the quantitative relationship between effects measured at the molecular or cellular level and
adverse outcome have not been adequately defined. In such cases, one might use increasingly complex
models—for example, zebrafish or targeted rodent testing—to assess biological activity and the outcomes
of a chemical exposure.

Assessment of Data-Rich Chemicals

Some chemicals are the subjects of substantive databases that leave no question regarding the causal
relationship between exposure and effect; that is, hazard identification is not an issue for decision-making.
However, there might still be unanswered questions that are relevant to regulatory decision-making, such
as questions concerning the effects of exposure at low doses, susceptible populations, possible mecha-
nisms for the observed effects, and new outcomes associated with exposure. The advances described in
Chapters 2—4 have the potential to reduce uncertainty around such key issues. The committee explores
how 21st century science can be used to address various questions in a case study that uses air pollution
as an example (see Box 5-4 and Appendix B).

Cumulative Risk Assessment

Cumulative risk assessment could benefit from the mechanistic data that are being generated. It is
well understood that everyone is exposed to multiple chemicals simultaneously in the environment, for
example, through the air we breathe, the foods we eat, and the products we use. However, risk assessment
is still conducted largely on individual chemicals even though chemicals that have a similar mechanism
for an outcome or that are associated with similar outcomes are considered as posing a cumulative risk
when they are encountered together (EPA 2000; NRC 2008). Cumulative risk assessment of carcinogens
is somewhat common in agencies, but camulative risk assessment of noncarcinogens is not so common.
One example of cumulative assessment is that of organophosphate pesticides whose mechanism is known
to be acetylcholinesterase inhibition.

Testing systems that evaluate more fundamental levels of biological organization (effects at the cel-
lular or molecular level) might be useful in identifying agents that act via a common mechanism and in
facilitating the risk assessment of mixtures. Identifying complete pathways for chemicals (from molecular
initiating events to individual or population-level disease) could also be useful in identifying chemicals
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BOX 5-4 Case Study: Air Pollution

The consequences of exposure fo air pollution have been extensively investigated, the evidence con-
cerning a causal relationship between air pollution and lung cancer is strong, and various agencies, in-
cluding the International Agency for Research on Cancer, have concluded that outdoor air pollution is car-
cinogenic. However, there are still unanswered questions, such as which components are primarily
responsible for carcinogenicity, whether there are interactions or synergies among the various compo-
nents, what effects might occur at low exposures, and which groups might be at greater risk because of
particular characteristics, such as smoking tobacco. As detailed in Appendix B, the first part of this case
study describes advances in exposure science and toxicology, specifically -omics technologies that can
help to characterize adverse effects, refine exposure further, and identify mechanisms and groups at risk.

The second part of the case study (see Appendix B) examines the situation in which a new outcome
is associated with a well-studied substance. In this case, recent evidence has emerged concerning an
association between neurodevelopmental outcomes in children and air-pollution exposure. Here the
question concerns mainly hazard identification because causal associations between air pollution and
any specific neurodevelopmental outcome are not yet established. Advances in exposure science that
could augment or improve new or continuing epidemiological investigations are described. Advances in
foxicology that could be used to assess the developmental neurotoxicity risk associated with air pollu-

tion are also described.

that result in the same adverse health outcome through different molecular pathways. High-throughput
screening systems and global gene-expression analysis are examples of technologies that could provide
the required information. The techniques applied in support of cumulative risk assessment will also sup-
port multifactorial risk evaluations discussed further in Chapter 7.

Site-Specific Assessments

Understanding the risks associated with a chemical spill or the extent to which a hazardous-waste
site needs to be remediated depends on understanding exposures to various chemicals and their toxicity.
The assessment problem contains three elements: identifying and quantifying chemicals present at the
site, characterizing their toxicity, and characterizing the toxicity of chemical mixture. Thus, one might
consider this situation to be an exposure-initiated assessment in which exposure information is a starting
point as illustrated in Figure 5-6. In this context, exposure information means information on newly iden-
tified chemicals and more complete characterization of exposure to chemicals previously identified at a
site. Box 5-5 provides two specific examples of exposure-initiated assessments.

Site of Interest Exposure Hazard & DoseResponse Risk Decision

identify
Characterized
Chemicals

Targeted
Analysis

Exposure.
Intervention;
Cleanup; Other

Hazard and
Dose Response:
Assessments

| Soil, Water, Air,

Food . Crops: —>  RiskAssessment

identify
Uncharacterized
Chemicals

Nontargeted
Analysis

Iidentify Bioactive
Chromatographic
Features

Collect Toxiciy
Data

. Identify Exposure:
© . ofinterestfrom
EWAS or Epi Stud:

FIGURE 5-6 Overview of approach and decisions for an exposure-initiated assessment. Abbreviations: Epi, epide-
miological; EWAS, exposome-wide association study.
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f BOX 5-5 Two Examples of Exposure-Initiated Assessment

In the first example of exposure-initiated assessment, scientists who were investigating Superfund
sites around the Portland Harbor in Oregon recently found novel environmental degradation products of
common polycyclic aromatic hydrocarbons (PAHs) (O'Connell et al. 2013). Thirty-eight oxygenated
PAHs were identified as toxicologically uncharacterized members of a PAH mixture at the site. Given
the urgent need for testing, novel high-throughput toxicity testing in zebrafish has been conducted on
representative mixtures of PAHs that were found in soil and water media of Portland Harbor (Knecht et
al. 2013), and passive sampling devices have been deployed to characterize concentrations in species
of the aquatic ecosystem that are used as human food (Paulik et al. 2016).

In the second example, nontargeted chemical analysis of dust samples that were collected as part of
the US American Healthy Homes Survey was conducted (Rager et al. 2018). Nontargeted analysis re-
vealed a spectrum of chromatographic features (elution time, exact mass, and isotopic signature) that
could not initially be assigned to distinct chemicals. Some features were later identified by using analyt-
ical standards that were selected on the basis of probable matches to chemical structures in EPA’s Dis-
tributed Structure-Searchable Toxicity database. Initial screening of the group of identified chemicals—
including pesticides, nicotine, and perfluorooctanoic acid—was completed by using exposure and bio-
activity estimates from ExpoCast and ToxCast, respectively, and information on detection frequency
and abundance; the information was presented in ToxPi format. The authors also reported the pres-
ence of large numbers of features that remain unidentified and untested. The approach could be ap-
plied to other environmental media, such as soil and water at Superfund sites or water streams that are

used as public drinking-water supplies but have been tested only for small numbers of chemicals.

The advances described in Chapters 2—4 can address each element involved in site-specific assess-
ments. Targeted analytical-chemistry approaches, particularly ones that use gas or high-performance lig-
uid chromatography coupled with mass spectrometry, can identify and quantify chemicals for which
standards are available. Nontargeted analyses can help to assign provisional identities to previously uni-
dentified chemicals. The committee explored the application of advances in exposure science to a case
study of a large historically contaminated site (see Box 5-6 below and Appendix C).

As for toxicity characterization, assessments of waste sites and chemical releases often involve
chemicals on which few toxicity data are available. In the case of waste sites, EPA assigns provisional
reference values for a number of chemicals by using the Provisional Peer Reviewed Toxicity Value
(PPRTV) process. However, because of the amount or quality of the data available, the PPRTV values
tend to entail large uncertainties. Analogue-based methods coupled with high-throughput or high-content
screening methods have the potential to improve the PPRTV process. Identification of well-tested appro-
priate analogues to an untested chemical at clean-up sites can provide more certain estimates of the hazard
and potency of the chemical, and the appropriateness of the analogues can be confirmed with high-
throughput screening or high-content data that show comparability of biological targets or other end
points and relative potency. Although the high-throughput or high-content models still require validation,
the read-across approach could be applied immediately.

In the case of chemical releases, few data might be available on various chemicals—a situation simi-
lar to waste sites—Dbut decisions might need to be made quickly. The committee uses the scenario of a
chemical release as a case study to examine how Tox21 approaches can be used to provide data on a data-
poor chemical quickly (see Box 5-6 below and Appendix C).

As for understanding the toxicity of chemical mixtures, high-throughput screening methods provide
information on mechanisms that can be useful in determining whether any mixture components might act
via a common mechanism, affect the same organ, or cause the same outcome and thus should be consid-
ered as posing a cumulative risk (EPA 2000; NRC 2008). High-throughput methods can also be used to
assess the toxicity of mixtures that are present at specific sites empirically rather than assessing individual
chemicals. Such real-time generation of hazard data was conducted on the dispersants that were used to
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BOX 5-6 Case Studies: Site-Specific Assessments

The committee created three case studies related to site-specific assessment that explore each ele-
ment of the problem and how to incorporate 21st century science into the evaluations. Appendix C pro-
vides the details of the case studies described below.

[ Identifying chemicals present. The committee considers a large historically contaminated site
with land and surface water near a major population center and describes how targeted and untar-
geted analyses of chemicals can be used at the site.

L] Characterizing toxicity. The committee considers the release of 4-methylcyclohexanemethanol
into the Elk River about 1 mile upstream of a water intake facility for the city of Charleston, WV, in
2014 and describes exposure and toxicity screening tools that help to understand the human risk.

L] Characterizing mixture toxicity. The committee considers a toxicity assessment of complex mix-
tures observed in environmental samples, tissues, and biofluids and illustrates how a biological read-
across approach could be used to conduct an assessment.

treat the crude oil released during the Deepwater Horizon disaster (Judson et al. 2010) to determine
whether some had greater endocrine activity or cytotoxicity than others. Endocrine assays were the focus
because of the known estrogenic activity of nonylphenol ethoxylates; nonylphenol (the degradation prod-
uct of nonylphenol ethoxylates) is known to be estrogenic.

It is possible to use high-throughput assay data as the basis of a biological read-across for complex
mixtures. For example, an uncharacterized mixture could be evaluated in high-throughput or high-content
testing, and the results could be compared with existing results for individual chemicals or well-
characterized mixtures. That process is similar to the connectivity mapping approach (Lamb et al. 2006)
in which the biological activity of a single chemical entity is compared with the fingerprint of other chem-
icals in a large dataset, and it is assumed that chemicals with like biological activity have the same mech-
anism. That approach for single chemicals can be used for uncharacterized mixtures. One would still not
know whether the biological activity was attributable to a single chemical entity or to multiple chemicals,
but it would not matter if one were concerned only about characterizing the risk associated with that par-
ticular mixture. The committee notes that it is possible that a mixture will exhibit more than one biologi-
cal activity, particularly at high concentrations, but it should be possible to gain a better understanding of
the biological activity by testing multiple concentrations of the mixture. The committee explores a biolog-
ical read-across approach for complex mixtures further in a case study that considers the hypothetical site
imagined in the first case study (see Box 5-6 and Appendix C).

Finally, new methods in exposure science, -omics technologies, and epidemiology provide another
approach to generate hypotheses about the role of chemicals and chemical mixtures in specific disease
states and to gather information about potential risks associated with specific sites. Information generated
on chemical mechanisms, particularly of site-specific chemical mixtures, might be useful for identifying
highly specific biomarkers of effect that can be measured in people who work or reside near a site of con-
cern. Measurement of biomarkers has advantages over collection of data on disease outcome because
many diseases of concern, such as cancer, are manifested only after chronic exposure or after a long la-
tency period. Such measurement could also be of value in determining the effectiveness of remediation
cfforts at the site if biomarkers can be measured before and after mitigation. Real-time individualized
measurements of exposure of people near a site are also possible and could provide richer data about peak
exposures or exposure durations.

Assessment of New Chemistries

Green chemistry involves the design of molecules and products that are optimized to have minimal
toxicity and limited environmental persistence, are (ideally) derived from renewable sources, and perform
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comparably with or better than the chemicals that they are replacing. The green-chemistry approach often
involves synthesis of new molecules on which there are no toxicity data and that might not have close
analogues. Green-chemistry design is another case in which the use of modern in vitro toxicology meth-
ods could have great utility by providing guidance on which molecular features are associated with great-
er or less toxicity and by identifying chemicals that do not affect biological pathways that are known to be
relevant for toxicity (Voutchkova et al. 2010). There are a few examples of the use of in vitro toxicity
methods to determine whether potential replacement chemicals are less toxic. For example, Nardelli et al.
(2015) evaluated the effects of a series of potential replacements for phthalate plasticizers on Sertoli cell
function, and high-throughput testing has been used to evaluate alternatives to bisphenol A in the manu-
facture of can linings (Seltenrich 2015). Using high-throughput methods in this context is not conceptual-
ly different from screening prospective therapeutic agents for maximal efficacy and minimal off-target
effects. Box 5-7 and Appendix D describe a case study of assessment of new chemistries.

One could use the same methods as described above to evaluate the toxicity of newly discovered
chemicals in the environment, for example, from unexpected breakdown products of a widely used pesti-
cide. If breakdown products are chemically related to their parent molecules, cheminformatics (read-
across) methods could also be appropriate for estimating their toxicity.

COMMUNICATING THE NEW APPROACHES

Many of the approaches introduced in this chapter will be unfamiliar to some stakeholder groups.
Communicating the strengths and limitations of the approaches in a transparent and understandable way
will be necessary if the results are to be applied appropriately and will be critical for the ultimate ac-
ceptance of the approaches. The information needs and communication strategies will depend on the
stakeholder group. The discussion here focuses on four stakeholder groups: risk assessors, risk managers
and public-health officials, clinicians, and the lay public.

Risk-assessment practitioners who are responsible for generating health reference values need to
have information on the details of the new approaches and on how to apply their results to predict human
risk. They probably need formal training in the interpretation and application of new data streams emerg-
ing from exposure science, toxicology, and epidemiology. Read-across, for example, is perhaps the most
familiar of the alternative approaches described in this chapter, but most risk assessors still need a great
deal of training in identifying appropriate chemical analogues on which to base a read-across and in ac-
counting for decreased confidence in the assessment if there are few analogues or less than perfect struc-
tural matches. They also need to develop new partnerships that can help them with their tasks, for exam-
ple, with computational and medicinal chemists who develop strategies for analogue searching, gauge the
suitability of each analogue, or determine the likely metabolic pathway of a chemical of interest and its
analogues to see whether they become more or less alike as they are biotransformed.

Most risk assessors are already familiar with the integration of traditional data for risk assessment,
but they will need help in understanding how to integrate novel data streams and how much confidence
they can have in the new data. One approach will be to compare the results from new methods with more
familiar data sources, particularly in vivo toxicology studies. For example, EPA recently concluded that a
high-throughput battery of estrogenicity assays is an acceptable alternative to the uterotrophic assay for
tier 1 endocrine-disrupter screening (Browne et al. 2015; EPA 2015). The communication strategy in this
case involved a description of the purpose of the assay battery, an explanation of the biological space
covered by the battery (that is, the extent of the estrogen-signaling pathway being evaluated and the re-
dundancy of the assays), a description of a computational model that integrates the data from all the as-
says and discriminates between a true response and noise, and a comparison with an existing method that
showed the new way working in most cases. Papers like the one cited provide useful models for further
technical communication to risk assessors.

Risk managers and public-health officials do not need information that provides details on the as-
says or how they are applied to risk assessment; they do need to know the uncertainty associated with
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BOX 5-7 Case Study: Assessment of New Chemistries

This case study describes a hypothetical example in which there are three choices of ‘new’ chemi-
cals for use in a manufacturing process that will result in human exposure. In Appendix D, the commit-
tee describes in vitro high-throughput data available on the chemicals and what those data might mean.
It then considers several scenarios in which human exposure could occur and calculates indoor air re-
leases that correspond to the in vitro bioassay data. The committee concludes with a discussion of how
the data could be used in the decision-making process.

risk estimates and the confidence that they should place in them. Communication to this group will
need to address those issues. There will be cases in which the new approaches will provide information
that was heretofore unavailable to them, and the new information will assist them in making decisions
about site remediation or acceptable exposure levels. This chapter discussed the possibility of using
read-across to increase the number of chemicals evaluated in the PPRTV process, and Appendix C
highlights a case study that uses cheminformatic approaches to address the developmental-toxicity po-
tential of 4-methylcyclohexanemethanol, a chemical for which there was no experimental data on that
outcome. Both examples illustrate how new approaches can provide information that would not have
been available in any other way. However, the uncertainties associated with the new approaches need
to be communicated.

As scientists advance the vision of identifying the many components that are responsible for multi-
factorial diseases, it will be necessary to communicate with clinicians and the public about how the fac-
tors have been identified, how ecach is related to others, and whether it is possible to reduce exposure to
one or more factors to decrease disease risk. Physicians are beginning to embrace new methods as ge-
nomic information on individual patients becomes more available and personalized medicine becomes
more of a reality, but there will still need to be communication to physicians in venues that they are likely
to read and with diagnostic and treatment approaches that they are likely to be able to implement.

As for the general public, although many people get their health information from their doctors,
some are far more likely to get medical information from the Internet and the popular press. The infor-
mation that those media outlets require about new approaches is not qualitatively different from what cli-
nicians need, but it needs to be presented in a format that is digestible by educated laypeople.

Finally, enhanced communication among the scientific community both nationally and international-
ly is vitally important for fully achieving the goals outlined in the Tox21 and ES21 reports and for gain-
ing consensus regarding the utility of the new approaches and their incorporation into decision-making.
The communication should include enhanced and more transparent integration of data and technology
generated from multiple sources, including academic laboratories. Universities could serve as a commu-
nication conduit for multiple stakeholders, particularly clinicians and the lay public; thus, their engage-
ment should be strategically leveraged. Ultimately, a more multidisciplinary and inclusive strategy for
scientific discourse will help attain broad understanding and confidence in the new tools.

CHALLENGES AND RECOMMENDATIONS

As noted earlier in this report, there are challenges to achieving the new direction for risk assess-
ment fully. Some, such as model and assay validation, are addressed in later chapters. Here, the commit-
tee highlights a few challenges that are specific to the applications and approaches described in the pre-
sent chapter and offers some recommendations to address them.

Challenge: For risk assessment of individual chemicals, various approaches, such as cheminformat-
ics and read-across, are already being applied because existing approaches are insufficient to meet the
backlog of chemicals that need to be assessed. However, methods for grouping chemicals, assessing the
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suitability of analogues, and accounting for data quality and confidence in assessment are still being de-
veloped or are being applied inconsistently.

Recommendation: Read-across and cheminformatic approaches should be developed further and in-
tegrated into environmental-chemical risk assessments. High-throughput, cell-based assays and high—
information-content approaches, such as gene-expression analysis, provide a large volume of data that can
be used to test the assumptions made in read-across that analogues have the same biological targets and
effects. Read-across and cheminformatics approaches depend on high-quality databases that are well cu-
rated; data curation and quality assurance should be a routine part of database development and mainte-
nance. New case studies that use cheminformatic and read-across approaches could demonstrate new ap-
plications and encourage their use.

Challenge: Approaches that use large data streams to evaluate the potential for toxicity present a
challenge in synthesizing information in a way that supports decision-making.

Recommendation: Statistical methods that can integrate multiple data streams and that are easy for
risk assessors and decision-makers to use should be developed further and made transparent and user-
friendly.

Challenge: Measuring biological events that are far upstream of disease states will introduce new
sources of uncertainty into the risk-assessment process. Using data on those events as the starting point
for risk assessment will require new approaches for risk assessment that are different from the current
methods, which identify a point of departure and apply default uncertainty factors or extrapolate by using
mathematical models.

Recommendation: New types of uncertainty will arise as the 21st century tools and approaches are
used, and research should be conducted to identify these new sources and their magnitude. Some tradi-
tional sources of uncertainty will disappear as scientists rely less on animal models to predict toxicity, and
these should also be identified.
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